Computing camera pose with homography matrix based on 4 coplanar points

怎甘沉沦 提交于 2019-11-26 11:40:28

If you have your Homography, you can calculate the camera pose with something like this:

void cameraPoseFromHomography(const Mat& H, Mat& pose)
{
    pose = Mat::eye(3, 4, CV_32FC1);      // 3x4 matrix, the camera pose
    float norm1 = (float)norm(H.col(0));  
    float norm2 = (float)norm(H.col(1));  
    float tnorm = (norm1 + norm2) / 2.0f; // Normalization value

    Mat p1 = H.col(0);       // Pointer to first column of H
    Mat p2 = pose.col(0);    // Pointer to first column of pose (empty)

    cv::normalize(p1, p2);   // Normalize the rotation, and copies the column to pose

    p1 = H.col(1);           // Pointer to second column of H
    p2 = pose.col(1);        // Pointer to second column of pose (empty)

    cv::normalize(p1, p2);   // Normalize the rotation and copies the column to pose

    p1 = pose.col(0);
    p2 = pose.col(1);

    Mat p3 = p1.cross(p2);   // Computes the cross-product of p1 and p2
    Mat c2 = pose.col(2);    // Pointer to third column of pose
    p3.copyTo(c2);       // Third column is the crossproduct of columns one and two

    pose.col(3) = H.col(2) / tnorm;  //vector t [R|t] is the last column of pose
}

This method works form me. Good luck.

The answer proposed by Jav_Rock does not provide a valid solution for camera poses in three-dimensional space.

For estimating a tree-dimensional transform and rotation induced by a homography, there exist multiple approaches. One of them provides closed formulas for decomposing the homography, but they are very complex. Also, the solutions are never unique.

Luckily, OpenCV 3 already implements this decomposition (decomposeHomographyMat). Given an homography and a correctly scaled intrinsics matrix, the function provides a set of four possible rotations and translations.

Dmytriy Voloshyn

Just in case anybody needs python porting of the function written by @Jav_Rock:

def cameraPoseFromHomography(H):
    H1 = H[:, 0]
    H2 = H[:, 1]
    H3 = np.cross(H1, H2)

    norm1 = np.linalg.norm(H1)
    norm2 = np.linalg.norm(H2)
    tnorm = (norm1 + norm2) / 2.0;

    T = H[:, 2] / tnorm
    return np.mat([H1, H2, H3, T])

Works fine in my tasks.

Computing [R|T] from the homography matrix is a little more complicated than Jav_Rock's answer.

In OpenCV 3.0, there is a method called cv::decomposeHomographyMat that returns four potential solutions, one of them is correct. However, OpenCV didn't provide a method to pick out the correct one.

I'm now working on this and maybe will post my codes here later this month.

Plane that contain your Square on image has vanishing lane agents your camera. Equation of this line is Ax+By+C=0.

Normal of your plane is (A,B,C)!

Let p00,p01,p10,p11 are coordinates of point after applying camera's intrinsic parameters and in homogenous form e.g, p00=(x00,y00,1)

Vanishing line can be calculated as:

  • down = p00 cross p01;
  • left = p00 cross p10;
  • right = p01 cross p11;
  • up = p10 cross p11;
  • v1=left cross right;
  • v2=up cross down;
  • vanish_line = v1 cross v2;

Where cross in standard vector cross product

Here's a python version, based on the one submitted by Dmitriy Voloshyn that normalizes the rotation matrix and transposes the result to be 3x4.

def cameraPoseFromHomography(H):  
    norm1 = np.linalg.norm(H[:, 0])
    norm2 = np.linalg.norm(H[:, 1])
    tnorm = (norm1 + norm2) / 2.0;

    H1 = H[:, 0] / norm1
    H2 = H[:, 1] / norm2
    H3 = np.cross(H1, H2)
    T = H[:, 2] / tnorm

    return np.array([H1, H2, H3, T]).transpose()
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!