Custom priors in PyMC

北城以北 提交于 2019-11-30 15:43:12

In PyMC2, the trick is to put the a and b parameters together:

# Code that defines the prior: p(a,b)∝(a+b)^(−5/2)
@pm.stochastic
def ab(power=-2.5, value=[1,1]):
    if np.any(value <= 0):
        return -np.Inf
    return power * np.log(value[0]+value[1])

a = ab[0]
b = ab[1]

This notebook has a full example.

Yup! It's quite possible, and in fact quite straightforward.

If you're in PyMC 2, check out the documentation on the creation of stochastic variables.

@pymc.stochastic(dtype=int)
def switchpoint(value=1900, t_l=1851, t_h=1962):
    """The switchpoint for the rate of disaster occurrence."""
    if value > t_h or value < t_l:
        # Invalid values
        return -np.inf
    else:
        # Uniform log-likelihood
        return -np.log(t_h - t_l + 1)

If you're in PyMC 3, have a look at multivariate.py. Keep in mind the values passed in to init and logp are all theano variables, not numpy arrays. Is that enough to get you started?

For example, this is the Multivariate Normal distribution

class MvNormal(Continuous):
    """
    Multivariate normal

    :Parameters:
        mu : vector of means
        tau : precision matrix

    .. math::
        f(x \mid \pi, T) = \frac{|T|^{1/2}}{(2\pi)^{1/2}} \exp\left\{ -\frac{1}{2} (x-\mu)^{\prime}T(x-\mu) \right\}

    :Support:
        2 array of floats
    """
    def __init__(self, mu, tau, *args, **kwargs):
        super(MvNormal, self).__init__(*args, **kwargs)
        self.mean = self.median = self.mode = self.mu = mu
        self.tau = tau

    def logp(self, value):
        mu = self.mu
        tau = self.tau

        delta = value - mu
        k = tau.shape[0]

        return 1/2. * (-k * log(2*pi) + log(det(tau)) - dot(delta.T, dot(tau, delta)))
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!