How to properly plot projected gridded data in ggplot2?

余生长醉 提交于 2019-11-29 21:02:13

After digging a bit more, it seems that your model is based on a 50Km regular grid in "lambert conical" projection. However, the coordinates you have in the netcdf are lat-lon WGS84 coordinates of the center of the "cells".

Given this, a simpler approach is to reconstruct the cells in the original projection and then plot the polygons after converting to an sf object, eventually after reprojection. Something like this should work (notice that you'll need to install the devel version of ggplot2 from github for it to work):

load(url('https://files.fm/down.php?i=kew5pxw7&n=loadme.Rdata'))
library(raster)
library(sf)
library(tidyverse)
library(maps)
devtools::install_github("hadley/ggplot2")

#   ____________________________________________________________________________
#   Transform original data to a SpatialPointsDataFrame in 4326 proj        ####

coords = data.frame(lat = values(s[[2]]), lon = values(s[[3]]))
spPoints <- SpatialPointsDataFrame(coords, 
                                   data = data.frame(data = values(s[[1]])), 
                                   proj4string = CRS("+init=epsg:4326"))

#   ____________________________________________________________________________
#   Convert back the lat-lon coordinates of the points to the original      ###
#   projection of the model (lcc), then convert the points to polygons in lcc
#   projection and convert to an `sf` object to facilitate plotting

orig_grid = spTransform(spPoints, projection(s))
polys = as(SpatialPixelsDataFrame(orig_grid, orig_grid@data, tolerance = 0.149842),"SpatialPolygonsDataFrame")
polys_sf = as(polys, "sf")
points_sf = as(orig_grid, "sf")

#   ____________________________________________________________________________
#   Plot using ggplot - note that now you can reproject on the fly to any    ###
#   projection using `coord_sf`

# Plot in original  projection (note that in this case the cells are squared): 
my_theme <- theme_bw() + theme(panel.ontop=TRUE, panel.background=element_blank())

ggplot(polys_sf) +
  geom_sf(aes(fill = data)) + 
  scale_fill_distiller(palette='Spectral') +
  ggtitle("Precipitations") +
  coord_sf() + 
  my_theme 

# Now Plot in WGS84 latlon projection and add borders: 

ggplot(polys_sf) +
  geom_sf(aes(fill = data)) + 
  scale_fill_distiller(palette='Spectral') +
  ggtitle("Precipitations")  +
  borders('world', colour='black')+
  coord_sf(crs = st_crs(4326), xlim = c(-60, 80), ylim = c(15, 75))+
  my_theme 

To add borders also wen plotting in the original projection, however, you'll have to provide the loygon boundaries as an sf object. Borrowing from here:

Converting a "map" object to a "SpatialPolygon" object

Something like this will work:

library(maptools)
borders  <- map("world", fill = T, plot = F)
IDs      <- seq(1,1627,1)
borders  <- map2SpatialPolygons(borders, IDs=borders$names, 
                               proj4string=CRS("+proj=longlat +datum=WGS84")) %>% 
            as("sf")

ggplot(polys_sf) +
  geom_sf(aes(fill = data), color = "transparent") + 
  geom_sf(data = borders, fill = "transparent", color = "black") +
  scale_fill_distiller(palette='Spectral') +
  ggtitle("Precipitations") +
  coord_sf(crs = st_crs(projection(s)), 
           xlim = st_bbox(polys_sf)[c(1,3)],
           ylim = st_bbox(polys_sf)[c(2,4)]) +
  my_theme

As a sidenote, now that we "recovered" the correct spatial reference, it is also possible to build a correct raster dataset. For example:

r <- s[[1]]
extent(r) <- extent(orig_grid) + 50000

will give you a proper raster in r:

r
class       : RasterLayer 
band        : 1  (of  36  bands)
dimensions  : 125, 125, 15625  (nrow, ncol, ncell)
resolution  : 50000, 50000  (x, y)
extent      : -3150000, 3100000, -3150000, 3100000  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=lcc +lat_1=30. +lat_2=65. +lat_0=48. +lon_0=9.75 +x_0=-25000. +y_0=-25000. +ellps=sphere +a=6371229. +b=6371229. +units=m +no_defs 
data source : in memory
names       : Total.precipitation.flux 
values      : 0, 0.0002373317  (min, max)
z-value     : 1998-01-16 10:30:00 
zvar        : pr 

See that now the resolution is 50Km, and the extent is in metric coordinates. You could thus plot/work with r using functions for raster data, such as:

library(rasterVis)
gplot(r) + geom_tile(aes(fill = value)) + 
  scale_fill_distiller(palette="Spectral", na.value = "transparent") +
  my_theme  

library(mapview)
mapview(r, legend = TRUE)  
Jeremy Voisey

"Zooming in" to see the points that are the cell centres. You can see they are in rectangular grid.

I calculated the vertices of the polygons as follows.

  • Convert 125x125 latitudes & longitudes to a matrix

  • Initialize 126x126 matrix for cell vertices (corners).

  • Calculate cell vertices as being mean position of each 2x2 group of points.

  • Add cell vertices for edges & corners (assume cell width & height is equal to width & height of adjacent cells).

  • Generate data.frame with each cell having four vertices, so we end up with 4x125x125 rows.

Code becomes

 pr <- s[[1]]
lon <- s[[2]]
lat <- s[[3]]

#Lets get the data into data.frames
#Gridded in model units:
#Projected points:
lat_m <- as.matrix(lat)
lon_m <- as.matrix(lon)
pr_m <- as.matrix(pr)

#Initialize emptry matrix for vertices
lat_mv <- matrix(,nrow = 126,ncol = 126)
lon_mv <- matrix(,nrow = 126,ncol = 126)


#Calculate centre of each set of (2x2) points to use as vertices
lat_mv[2:125,2:125] <- (lat_m[1:124,1:124] + lat_m[2:125,1:124] + lat_m[2:125,2:125] + lat_m[1:124,2:125])/4
lon_mv[2:125,2:125] <- (lon_m[1:124,1:124] + lon_m[2:125,1:124] + lon_m[2:125,2:125] + lon_m[1:124,2:125])/4

#Top edge
lat_mv[1,2:125] <- lat_mv[2,2:125] - (lat_mv[3,2:125] - lat_mv[2,2:125])
lon_mv[1,2:125] <- lon_mv[2,2:125] - (lon_mv[3,2:125] - lon_mv[2,2:125])

#Bottom Edge
lat_mv[126,2:125] <- lat_mv[125,2:125] + (lat_mv[125,2:125] - lat_mv[124,2:125])
lon_mv[126,2:125] <- lon_mv[125,2:125] + (lon_mv[125,2:125] - lon_mv[124,2:125])

#Left Edge
lat_mv[2:125,1] <- lat_mv[2:125,2] + (lat_mv[2:125,2] - lat_mv[2:125,3])
lon_mv[2:125,1] <- lon_mv[2:125,2] + (lon_mv[2:125,2] - lon_mv[2:125,3])

#Right Edge
lat_mv[2:125,126] <- lat_mv[2:125,125] + (lat_mv[2:125,125] - lat_mv[2:125,124])
lon_mv[2:125,126] <- lon_mv[2:125,125] + (lon_mv[2:125,125] - lon_mv[2:125,124])

#Corners
lat_mv[c(1,126),1] <- lat_mv[c(1,126),2] + (lat_mv[c(1,126),2] - lat_mv[c(1,126),3])
lon_mv[c(1,126),1] <- lon_mv[c(1,126),2] + (lon_mv[c(1,126),2] - lon_mv[c(1,126),3])

lat_mv[c(1,126),126] <- lat_mv[c(1,126),125] + (lat_mv[c(1,126),125] - lat_mv[c(1,126),124])
lon_mv[c(1,126),126] <- lon_mv[c(1,126),125] + (lon_mv[c(1,126),125] - lon_mv[c(1,126),124])


pr_df_orig <- data.frame(lat=lat[], lon=lon[], pr=pr[])

pr_df <- data.frame(lat=as.vector(lat_mv[1:125,1:125]), lon=as.vector(lon_mv[1:125,1:125]), pr=as.vector(pr_m))
pr_df$id <- row.names(pr_df)

pr_df <- rbind(pr_df,
               data.frame(lat=as.vector(lat_mv[1:125,2:126]), lon=as.vector(lon_mv[1:125,2:126]), pr = pr_df$pr, id = pr_df$id),
               data.frame(lat=as.vector(lat_mv[2:126,2:126]), lon=as.vector(lon_mv[2:126,2:126]), pr = pr_df$pr, id = pr_df$id),
               data.frame(lat=as.vector(lat_mv[2:126,1:125]), lon=as.vector(lon_mv[2:126,1:125]), pr = pr_df$pr, id= pr_df$id))

Same zoomed image with polygon cells

Labels Fix

ewbrks <- seq(-180,180,20)
nsbrks <- seq(-90,90,10)
ewlbls <- unlist(lapply(ewbrks, function(x) ifelse(x < 0, paste(abs(x), "°W"), ifelse(x > 0, paste(abs(x), "°E"),x))))
nslbls <- unlist(lapply(nsbrks, function(x) ifelse(x < 0, paste(abs(x), "°S"), ifelse(x > 0, paste(abs(x), "°N"),x))))

Replacing geom_tile & geom_point with geom_polygon

ggplot(pr_df, aes(y=lat, x=lon, fill=pr, group = id)) + geom_polygon() +
    borders('world', xlim=range(pr_df$lon), ylim=range(pr_df$lat), colour='black') + my_theme + my_fill +
    coord_quickmap(xlim=range(pr_df$lon), ylim=range(pr_df$lat)) +
scale_x_continuous(breaks = ewbrks, labels = ewlbls, expand = c(0, 0)) +
scale_y_continuous(breaks = nsbrks, labels = nslbls, expand = c(0, 0)) + 
labs(x = "Longitude", y = "Latitude")

ggplot(pr_df, aes(y=lat, x=lon, fill=pr, group = id)) + geom_polygon() +
    borders('world', xlim=range(pr_df$lon), ylim=range(pr_df$lat), colour='black') + my_theme + my_fill +
    coord_map('lambert', lat0=30, lat1=65, xlim=c(-20, 39), ylim=c(19, 75)) +
scale_x_continuous(breaks = ewbrks, labels = ewlbls, expand = c(0, 0)) +
scale_y_continuous(breaks = nsbrks, labels = nslbls, expand = c(0, 0)) + 
labs(x = "Longitude", y = "Latitude")

Edit - work around for axis ticks

I've been unable to find any quick solution for the grid lines and labels for the latitude. There is probably an R package out there somewhere which will solve your problem with far less code!

Manually setting nsbreaks required and creating data.frame

ewbrks <- seq(-180,180,20)
nsbrks <- c(20,30,40,50,60,70)
nsbrks_posn <- c(-16,-17,-16,-15,-14.5,-13)
ewlbls <- unlist(lapply(ewbrks, function(x) ifelse(x < 0, paste0(abs(x), "° W"), ifelse(x > 0, paste0(abs(x), "° E"),x))))
nslbls <- unlist(lapply(nsbrks, function(x) ifelse(x < 0, paste0(abs(x), "° S"), ifelse(x > 0, paste0(abs(x), "° N"),x))))
latsdf <- data.frame(lon = rep(c(-100,100),length(nsbrks)), lat = rep(nsbrks, each =2), label = rep(nslbls, each =2), posn = rep(nsbrks_posn, each =2))

Remove the y axis tick labels and corresponding gridlines and then add back in "manually" using geom_line and geom_text

ggplot(pr_df, aes(y=lat, x=lon, fill=pr, group = id)) + geom_polygon() +
    borders('world', xlim=range(pr_df$lon), ylim=range(pr_df$lat), colour='black') + my_theme + my_fill +
    coord_map('lambert', lat0=30, lat1=65, xlim=c(-20, 40), ylim=c(19, 75)) +
    scale_x_continuous(breaks = ewbrks, labels = ewlbls, expand = c(0, 0)) +
    scale_y_continuous(expand = c(0, 0), breaks = NULL) + 
    geom_line(data = latsdf, aes(x=lon, y=lat, group = lat), colour = "white", size = 0.5, inherit.aes = FALSE) +
    geom_text(data = latsdf, aes(x = posn, y = (lat-1), label = label), angle = -13, size = 4, inherit.aes = FALSE) +
    labs(x = "Longitude", y = "Latitude") +
    theme( axis.text.y=element_blank(),axis.ticks.y=element_blank())

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!