What is the performance difference in MySQL relational division (IN AND instead of IN OR) implementations?

♀尐吖头ヾ 提交于 2019-11-29 16:51:06

I made some improvements in the JOIN version; see below.

I vote for the JOIN approach for speed. Here's how I determined it:

HAVING, version 1

mysql> FLUSH STATUS;
mysql> SELECT city
    ->     FROM us_vch200
    ->     WHERE state IN ('IL', 'MO', 'PA')
    ->     GROUP BY city
    ->     HAVING count(DISTINCT state) >= 3;
+-------------+
| city        |
+-------------+
| Springfield |
| Washington  |
+-------------+
mysql> SHOW SESSION STATUS LIKE 'Handler%';
+----------------------------+-------+
| Variable_name              | Value |
+----------------------------+-------+
| Handler_external_lock      | 2     |
| Handler_read_first         | 1     |
| Handler_read_key           | 2     |
| Handler_read_last          | 1     |
| Handler_read_next          | 4175  | -- full index scan

(etc)

+----+-------------+-----------+-------+-----------------------+------------+---------+------+------+--------------------------------------------------+
| id | select_type | table     | type  | possible_keys         | key        | key_len | ref  | rows | Extra                                            |
+----+-------------+-----------+-------+-----------------------+------------+---------+------+------+--------------------------------------------------+
|  1 | SIMPLE      | us_vch200 | range | state_city,city_state | city_state | 769     | NULL | 4176 | Using where; Using index for group-by (scanning) |
+----+-------------+-----------+-------+-----------------------+------------+---------+------+------+--------------------------------------------------+

The 'Extra' points out that it decided to tackle the GROUP BY and use INDEX(city, state) even though INDEX(state, city) might make sense.

HAVING, version 2

Making it switch to INDEX(state, city) yields:

mysql> FLUSH STATUS;
mysql> SELECT city
    ->     FROM us_vch200  IGNORE INDEX(city_state)
    ->     WHERE state IN ('IL', 'MO', 'PA')
    ->     GROUP BY city
    ->     HAVING count(DISTINCT state) >= 3;
+-------------+
| city        |
+-------------+
| Springfield |
| Washington  |
+-------------+
mysql> SHOW SESSION STATUS LIKE 'Handler%';
+----------------------------+-------+
| Variable_name              | Value |
+----------------------------+-------+
| Handler_commit             | 1     |
| Handler_external_lock      | 2     |
| Handler_read_key           | 401   |
| Handler_read_next          | 398   |
| Handler_read_rnd           | 398   |
(etc)

+----+-------------+-----------+-------+-----------------------+------------+---------+------+------+------------------------------------------+
| id | select_type | table     | type  | possible_keys         | key        | key_len | ref  | rows | Extra                                    |
+----+-------------+-----------+-------+-----------------------+------------+---------+------+------+------------------------------------------+
|  1 | SIMPLE      | us_vch200 | range | state_city,city_state | state_city | 2       | NULL |  397 | Using where; Using index; Using filesort |
+----+-------------+-----------+-------+-----------------------+------------+---------+------+------+------------------------------------------+

JOIN

mysql> SELECT x.city
    -> FROM us_vch200 x
    -> JOIN us_vch200 y ON y.city= x.city AND y.state = 'MO'
    -> JOIN us_vch200 z ON z.city= x.city AND z.state = 'PA'
    -> WHERE                                  x.state = 'IL';
+-------------+
| city        |
+-------------+
| Springfield |
| Washington  |
+-------------+
2 rows in set (0.00 sec)

mysql> SHOW SESSION STATUS LIKE 'Handler%';
+----------------------------+-------+
| Variable_name              | Value |
+----------------------------+-------+
| Handler_commit             | 1     |
| Handler_external_lock      | 6     |
| Handler_read_key           | 86    |
| Handler_read_next          | 87    |
(etc)    
+----+-------------+-------+------+-----------------------+------------+---------+--------------------+------+--------------------------+
| id | select_type | table | type | possible_keys         | key        | key_len | ref                | rows | Extra                    |
+----+-------------+-------+------+-----------------------+------------+---------+--------------------+------+--------------------------+
|  1 | SIMPLE      | y     | ref  | state_city,city_state | state_city | 2       | const              |   81 | Using where; Using index |
|  1 | SIMPLE      | z     | ref  | state_city,city_state | state_city | 769     | const,world.y.city |    1 | Using where; Using index |
|  1 | SIMPLE      | x     | ref  | state_city,city_state | state_city | 769     | const,world.y.city |    1 | Using where; Using index |
+----+-------------+-------+------+-----------------------+------------+---------+--------------------+------+--------------------------+

Only INDEX(state, city) is needed. The Handler numbers are the smallest for this formulation, so I deduce that it is the fastest.

Notice how the optimizer made up its own mind which table to start with, probably due to

+-------+----------+
| state | COUNT(*) |
+-------+----------+
| IL    |      221 |
| MO    |       81 |  -- smallest
| PA    |       96 |
+-------+----------+

Conclusions

JOIN (without the unnecessary t table) is probably the fastest. Plus this composite index is needed: INDEX(state, city).

To translate back to your use case:

city --> documentid
state --> termid

Caveat: YMMV because the distribution of values for documentid and termid could be quite different than the test case I used.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!