take randomly sample based on groups

孤街醉人 提交于 2019-11-26 08:27:19

问题


I have a df made by almost 50,000 rows spread in 15 different IDs (every ID has thousands of observations). df looks like:

        ID  Year    Temp    ph
1       P1  1996    11.3    6.80
2       P1  1996    9.7     6.90
3       P1  1997    9.8     7.10
...
2000    P2  1997    10.5    6.90
2001    P2  1997    9.9     7.00
2002    P2  1997    10.0    6.93

I want to take 500 random rows for every ID (so 500 for P1, 500 for P2,....) and create a new df. I try:

new_df<-df[df$ID %in% sample(unique(dfID),500),]

But it takes randomly one ID, while I need 500 random rows for every ID.


回答1:


Try this:

library(plyr)
ddply(df,.(ID),function(x) x[sample(nrow(x),500),])



回答2:


This is available as the sample_n function in dplyr:

library(dplyr)
new_df <- df %>% group_by(ID) %>% sample_n(500)



回答3:


Here is one approach in base R.

First, the prerequisite sample data to work with:

set.seed(1)
mydf <- data.frame(ID = rep(1:3, each = 5), matrix(rnorm(45), ncol = 3))
mydf
#    ID         X1          X2          X3
# 1   1 -0.6264538 -0.04493361  1.35867955
# 2   1  0.1836433 -0.01619026 -0.10278773
# 3   1 -0.8356286  0.94383621  0.38767161
# 4   1  1.5952808  0.82122120 -0.05380504
# 5   1  0.3295078  0.59390132 -1.37705956
# 6   2 -0.8204684  0.91897737 -0.41499456
# 7   2  0.4874291  0.78213630 -0.39428995
# 8   2  0.7383247  0.07456498 -0.05931340
# 9   2  0.5757814 -1.98935170  1.10002537
# 10  2 -0.3053884  0.61982575  0.76317575
# 11  3  1.5117812 -0.05612874 -0.16452360
# 12  3  0.3898432 -0.15579551 -0.25336168
# 13  3 -0.6212406 -1.47075238  0.69696338
# 14  3 -2.2146999 -0.47815006  0.55666320
# 15  3  1.1249309  0.41794156 -0.68875569

Second, the sampling:

do.call(rbind, 
        lapply(split(mydf, mydf$ID), 
               function(x) x[sample(nrow(x), 3), ]))
#      ID         X1          X2         X3
# 1.2   1  0.1836433 -0.01619026 -0.1027877
# 1.1   1 -0.6264538 -0.04493361  1.3586796
# 1.5   1  0.3295078  0.59390132 -1.3770596
# 2.10  2 -0.3053884  0.61982575  0.7631757
# 2.9   2  0.5757814 -1.98935170  1.1000254
# 2.8   2  0.7383247  0.07456498 -0.0593134
# 3.13  3 -0.6212406 -1.47075238  0.6969634
# 3.12  3  0.3898432 -0.15579551 -0.2533617
# 3.15  3  1.1249309  0.41794156 -0.6887557

There is also strata from the sampling package, which is convenient when you want to sample different sizes from each group:

# install.packages("sampling")
library(sampling)
set.seed(1)
x <- strata(mydf, "ID", size = c(2, 3, 2), method = "srswor")
getdata(mydf, x)
#            X1          X2         X3 ID ID_unit Prob Stratum
# 2   0.1836433 -0.01619026 -0.1027877  1       2  0.4       1
# 5   0.3295078  0.59390132 -1.3770596  1       5  0.4       1
# 6  -0.8204684  0.91897737 -0.4149946  2       6  0.6       2
# 8   0.7383247  0.07456498 -0.0593134  2       8  0.6       2
# 9   0.5757814 -1.98935170  1.1000254  2       9  0.6       2
# 14 -2.2146999 -0.47815006  0.5566632  3      14  0.4       3
# 15  1.1249309  0.41794156 -0.6887557  3      15  0.4       3



回答4:


An approach if on of the IDs is < 500. Here I used the mtcars set:

n <- 8
df <- mtcars
df$ID <- df$cyl

FUN <- function(x, n) {
    if (length(x) <= n) return(x)
    x[x %in% sample(x, n)]
}

df[unlist(lapply(split(1:nrow(df), df$ID), FUN, n = 8)), ]



回答5:


In case you have big datasets, a data.table solution could go like this:

library(data.table)

# Generate 26 mil rows random data
set.seed(2019)
dt <- data.table(c1 = sample(length(LETTERS)*10^6), 
                 c2 = sample(LETTERS, replace = TRUE))

# For each letter, sample 500 rows
dt_sample <- dt[, .SD[sample(x = .N, size = 500)], by = c2]

# We indeed sampled 500 rows for each letter
dt_sample[, .N, by = c2][order(c2)]
#>     c2   N
#>  1:  A 500
#>  2:  D 500
#>  3:  G 500
#>  4:  I 500
#>  5:  M 500
#>  6:  N 500
#>  7:  O 500
#>  8:  P 500
#>  9:  Q 500
#> 10:  R 500
#> 11:  S 500
#> 12:  T 500
#> 13:  U 500
#> 14:  V 500
#> 15:  W 500
#> 16:  Y 500
#> 17:  Z 500

Created on 2019-04-23 by the reprex package (v0.2.1)

In case your data is unbalanced in the sense that some groups happen to be smaller (as number of rows) than your desired sample size, then you need to set a defensive trick like sample size should be min(500, .N) - see sample random rows within each group in a data.table. So like:

dt[, .SD[sample(x = .N, size = min(500, .N))], by = c2]




回答6:


mydata1 is your original data(not tested)

mydata2<- split(mydata1,mydata1$ID)
names(mydata2)<-paste0("mydata2",1:length(levels(ID))) 
mysample<-Map(function(x) x[sample((1:nrow(x)),size=500,replace=FALSE),], mydata2)

library(plyr)# for rbinding the mysample
ldply(mysample)



回答7:


Although this is not very elegant solution, but it may work.

library(data.table)
df <- data.table(df)
f <- list()
for(i in unique(df1$ID)){
 f[[i]] <- df1[id == i][sample(.N,(500))]
  }
 dfnew <- rbindlist(f)



回答8:


library(data.table) #1
df <- data.table(df) #2
df[,group_num := sample(2,.N,replace = TRUE,prob = c(500,.N-500)/.N),by = "ID"] #3
df_sample = df[group_num == 1,] #4

or you can change line #3 and #4 to:

df[,random_num := sample(.N,.N),by="ID"]
df_sample  = df[random_num <=500,]


来源:https://stackoverflow.com/questions/18258690/take-randomly-sample-based-on-groups

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!