Elegant way to create empty pandas DataFrame with NaN of type float

佐手、 提交于 2019-11-28 17:27:44

Simply pass the desired representative as a scalar first argument, like 0, math.inf or, in this case, np.nan. The constructor then initializes the value array to the size specified by index and columns:

 >>> df = pd.DataFrame(np.nan, index=[0,1,2,3], columns=['A'])
 >>> df.dtypes
 A    float64
 dtype: object

You could specify the dtype directly when constructing the DataFrame:

>>> df = pd.DataFrame(index=range(0,4),columns=['A'], dtype='float')
>>> df.dtypes
A    float64
dtype: object

Specifying the dtype forces Pandas to try creating the DataFrame with that type, rather than trying to infer it.

Hope this can help!

 pd.DataFrame(np.nan, index = np.arange(<num_rows>), columns = ['A'])

You can try this line of code:

pdDataFrame = pd.DataFrame([np.nan] * 7)

This will create a pandas dataframe of size 7 with NaN of type float:

if you print pdDataFrame the output will be:

     0
0   NaN
1   NaN
2   NaN
3   NaN
4   NaN
5   NaN
6   NaN

Also the output for pdDataFrame.dtypes is:

0    float64
dtype: object

For multiple columns you can do:

df = pd.DataFrame(np.zeros([nrow, ncol])*np.nan)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!