问题
I have a pandas df named inventory, which has a column containing Part Numbers (AlphaNumeric). Some of those part numbers have been superseded and I have another df named replace_with containing two columns, 'old part numbers' and 'new part numbers'.
For example:
Inventory has values like:
* 123AAA
* 123BBB
* 123CCC
......
and replace-with has values like
**oldPartnumbers** ..... **newPartnumbers**
* 123AAA ............ 123ABC
* 123CCC ........... 123DEF
SO, i need to replace corresponding values in inventory with the new numbers. After replacement inventory will look like as follows:
* 123ABC
* 123BBB
* 123DEF
Is there a simple way to do that in python? Thanks!
回答1:
Let say you have 2 df as follows:
import pandas as pd
df1 = pd.DataFrame([[1,3],[5,4],[6,7]], columns = ['PN','name'])
df2 = pd.DataFrame([[2,22],[3,33],[4,44],[5,55]], columns = ['oldname','newname'])
df1:
PN oldname
0 1 3
1 5 4
2 6 7
df2:
oldname newname
0 2 22
1 3 33
2 4 44
3 5 55
run left join between them:
temp = df1.merge(df2,'left',left_on='name',right_on='oldname')
temp:
PN name oldname newname
0 1 3 3.0 33.0
1 5 4 4.0 44.0
2 6 7 NaN NaN
then calculate the new name column and replace it:
df1['name'] = temp.apply(lambda row: row['newname'] if pd.notnull(row['newname']) else row['name'], axis=1)
df1:
PN name
0 1 33.0
1 5 44.0
2 6 7.0
or, as one liner:
df1['name'] = df1.merge(df2,'left',left_on='name',right_on='oldname').apply(lambda row: row['newname'] if pd.notnull(row['newname']) else row['name'], axis=1)
回答2:
Setup
Consider the dataframes inventory and replace_with
inventory = pd.DataFrame(dict(Partnumbers=['123AAA', '123BBB', '123CCC']))
replace_with = pd.DataFrame(dict(
oldPartnumbers=['123AAA', '123BBB', '123CCC'],
newPartnumbers=['123ABC', '123DEF', '123GHI']
))
Option 1map
d = replace_with.set_index('oldPartnumbers').newPartnumbers
inventory['Partnumbers'] = inventory['Partnumbers'].map(d)
inventory
Partnumbers
0 123ABC
1 123DEF
2 123GHI
Option 2replace
d = replace_with.set_index('oldPartnumbers').newPartnumbers
inventory['Partnumbers'].replace(d, inplace=True)
inventory
Partnumbers
0 123ABC
1 123DEF
2 123GHI
回答3:
This solution is relatively fast - it uses pandas data alignment and the numpy "copyto" function.
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'partNumbers': ['123AAA', '123BBB', '123CCC', '123DDD']})
df2 = pd.DataFrame({'oldPartnumbers': ['123AAA', '123BBB', '123CCC'],
'newPartnumbers': ['123ABC', '123DEF', '123GHI']})
# assign index in each dataframe to original part number columns
# (faster than set_index method, but use set_index if original index must be preserved)
df1.index = df1.partNumbers
df2.index = df2.oldPartnumbers
# use pandas index data alignment
df1['updatedPartNumbers'] = df2.newPartnumbers
# use numpy to copy in old part num when a new part num is not found
np.copyto(df1.updatedPartNumbers.values,
df1.partNumbers.values,
where=pd.isnull(df1.updatedPartNumbers))
# reset index
df1.reset_index(drop=True, inplace=True)
df1:
partNumbers updatedPartNumbers
0 123AAA 123ABC
1 123BBB 123DEF
2 123CCC 123GHI
3 123DDD 123DDD
来源:https://stackoverflow.com/questions/44879044/replace-values-in-a-pandas-column-using-another-pandas-df-which-has-the-correspo