How to find branch point from binary skeletonize image

孤街浪徒 提交于 2020-12-30 03:46:23

问题


I use Python OpenCV to skeletonize an image like this:

This is the skeletonized image

and I want to find the branch point of the skeleton

This is the point that I wanted

I have no idea how to do it. Any thoughts?


回答1:


The main idea here is to look in the neighborhood. You can use a 8-conected neighborhood for every pixels ([1 1 1; 1 1 1; 1 1 1], and the center is the pixel for which the neighborhood being explored!).

At every branch point, the degree of the pixel will be > 2, while regular pixels will have a degree of 2 (i.e., connected to 2 pixels in their neighborhood).

In your case your objective is finding a 'crossing point', where the degree is > 3.




回答2:


You can use the library Skan to find the branch points.

from skan import skeleton_to_csgraph
from skimage import io, morphology

# loading image
image = io.imread('https://i.stack.imgur.com/FpSt9.jpg')

# make image binary
image_binary = image >= 200

# skeletonize
sk = morphology.skeletonize(image_binary).astype(bool)

# receive a degree matrix
_, _, degrees = skeleton_to_csgraph(sk)

# consider all values larger than two as intersection
intersection_matrix = degrees > 2

The result here is not a single pixel as multiple branches meet at one point. One could determine this center region with regionprops and then find the centroid if one needs exactly one pixel.




回答3:


Output (overlaid on input image):

Code:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Find branch point in example image.
"""

import numpy as np
import matplotlib.pyplot as plt
from mahotas.morph import hitmiss as hit_or_miss
from skimage.morphology import medial_axis as skeletonize
# from scipy.ndimage import binary_hit_or_miss as hit_or_miss

def find_branch_points(skel):
    X=[]
    #cross X
    X0 = np.array([[0, 1, 0],
                   [1, 1, 1],
                   [0, 1, 0]])
    X1 = np.array([[1, 0, 1],
                   [0, 1, 0],
                   [1, 0, 1]])
    X.append(X0)
    X.append(X1)
    #T like
    T=[]
    #T0 contains X0
    T0=np.array([[2, 1, 2],
                 [1, 1, 1],
                 [2, 2, 2]])

    T1=np.array([[1, 2, 1],
                 [2, 1, 2],
                 [1, 2, 2]])  # contains X1

    T2=np.array([[2, 1, 2],
                 [1, 1, 2],
                 [2, 1, 2]])

    T3=np.array([[1, 2, 2],
                 [2, 1, 2],
                 [1, 2, 1]])

    T4=np.array([[2, 2, 2],
                 [1, 1, 1],
                 [2, 1, 2]])

    T5=np.array([[2, 2, 1],
                 [2, 1, 2],
                 [1, 2, 1]])

    T6=np.array([[2, 1, 2],
                 [2, 1, 1],
                 [2, 1, 2]])

    T7=np.array([[1, 2, 1],
                 [2, 1, 2],
                 [2, 2, 1]])
    T.append(T0)
    T.append(T1)
    T.append(T2)
    T.append(T3)
    T.append(T4)
    T.append(T5)
    T.append(T6)
    T.append(T7)
    #Y like
    Y=[]
    Y0=np.array([[1, 0, 1],
                 [0, 1, 0],
                 [2, 1, 2]])

    Y1=np.array([[0, 1, 0],
                 [1, 1, 2],
                 [0, 2, 1]])

    Y2=np.array([[1, 0, 2],
                 [0, 1, 1],
                 [1, 0, 2]])

    Y2=np.array([[1, 0, 2],
                 [0, 1, 1],
                 [1, 0, 2]])

    Y3=np.array([[0, 2, 1],
                 [1, 1, 2],
                 [0, 1, 0]])

    Y4=np.array([[2, 1, 2],
                 [0, 1, 0],
                 [1, 0, 1]])
    Y5=np.rot90(Y3)
    Y6 = np.rot90(Y4)
    Y7 = np.rot90(Y5)
    Y.append(Y0)
    Y.append(Y1)
    Y.append(Y2)
    Y.append(Y3)
    Y.append(Y4)
    Y.append(Y5)
    Y.append(Y6)
    Y.append(Y7)

    bp = np.zeros(skel.shape, dtype=int)
    for x in X:
        bp = bp + hit_or_miss(skel,x)
    for y in Y:
        bp = bp + hit_or_miss(skel,y)
    for t in T:
        bp = bp + hit_or_miss(skel,t)

    return bp

def find_end_points(skel):
    endpoint1=np.array([[0, 0, 0],
                        [0, 1, 0],
                        [2, 1, 2]])

    endpoint2=np.array([[0, 0, 0],
                        [0, 1, 2],
                        [0, 2, 1]])

    endpoint3=np.array([[0, 0, 2],
                        [0, 1, 1],
                        [0, 0, 2]])

    endpoint4=np.array([[0, 2, 1],
                        [0, 1, 2],
                        [0, 0, 0]])

    endpoint5=np.array([[2, 1, 2],
                        [0, 1, 0],
                        [0, 0, 0]])

    endpoint6=np.array([[1, 2, 0],
                        [2, 1, 0],
                        [0, 0, 0]])

    endpoint7=np.array([[2, 0, 0],
                        [1, 1, 0],
                        [2, 0, 0]])

    endpoint8=np.array([[0, 0, 0],
                        [2, 1, 0],
                        [1, 2, 0]])

    ep1=hit_or_miss(skel,endpoint1)
    ep2=hit_or_miss(skel,endpoint2)
    ep3=hit_or_miss(skel,endpoint3)
    ep4=hit_or_miss(skel,endpoint4)
    ep5=hit_or_miss(skel,endpoint5)
    ep6=hit_or_miss(skel,endpoint6)
    ep7=hit_or_miss(skel,endpoint7)
    ep8=hit_or_miss(skel,endpoint8)
    ep = ep1+ep2+ep3+ep4+ep5+ep6+ep7+ep8
    return ep

# --------------------------------------------------------------------------------
# script
# --------------------------------------------------------------------------------

img = plt.imread("test.jpg")

# for some reason (screenshot?), example image is not binary
binary = img >= 250

skeleton = skeletonize(binary)

branch_pts = find_branch_points(skeleton)

plt.imshow(binary + branch_pts, cmap='gray', interpolation='nearest'); plt.show()


来源:https://stackoverflow.com/questions/43037692/how-to-find-branch-point-from-binary-skeletonize-image

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!