Removing dicts with duplicate value from list of dicts

依然范特西╮ 提交于 2020-12-29 15:11:50

问题


I have a list of dicts as follows:

[{'ppm_error': -5.441115144810845e-07, 'key': 'Y7', 'obs_ion': 1054.5045550349998},
{'ppm_error': 2.3119997582222951e-07, 'key': 'Y9', 'obs_ion': 1047.547178035},
{'ppm_error': 2.3119997582222951e-07, 'key': 'Y9', 'obs_ion': 1381.24928035},
{'ppm_error': -2.5532659838679713e-06, 'key': 'Y4', 'obs_ion': 741.339467035},
{'ppm_error': 1.3036219678359603e-05, 'key': 'Y10', 'obs_ion': 1349.712302035},
{'ppm_error': 3.4259216556970878e-06, 'key': 'Y6', 'obs_ion': 941.424286035},
{'ppm_error': 1.1292770047090912e-06, 'key': 'Y2', 'obs_ion': 261.156025035},
{'ppm_error': 1.1292770047090912e-06, 'key': 'Y2', 'obs_ion': 389.156424565},
{'ppm_error': 9.326980606898406e-06, 'key': 'Y5', 'obs_ion': 667.3107950350001}
]

I want to remove dicts with duplicate keys such that only dicts with unique 'key' remain. It doesn't matter which dict ends up in the final list. So the final list should look as follows:

[{'ppm_error': -5.441115144810845e-07, 'key': 'Y7', 'obs_ion': 1054.5045550349998},
{'ppm_error': 2.3119997582222951e-07, 'key': 'Y9', 'obs_ion': 1381.24928035},
{'ppm_error': -2.5532659838679713e-06, 'key': 'Y4', 'obs_ion': 741.339467035},
{'ppm_error': 1.3036219678359603e-05, 'key': 'Y10', 'obs_ion': 1349.712302035},
{'ppm_error': 3.4259216556970878e-06, 'key': 'Y6', 'obs_ion': 941.424286035},
{'ppm_error': 1.1292770047090912e-06, 'key': 'Y2', 'obs_ion': 261.156025035},
{'ppm_error': 9.326980606898406e-06, 'key': 'Y5', 'obs_ion': 667.3107950350001}
]

Is it possible to use itertools.groupby function for doing this or is there another way of approaching this problem? Any suggestions?


回答1:


If the order matters, then you can use collections.OrderedDict to collect all the items, like this

from collections import OrderedDict
print OrderedDict((d["key"], d) for d in my_list).values()

And if the order doesn't matter, you can use a normal dictionary, like this

print {d["key"]:d for d in my_list}.values()



回答2:


Another solution is to remember processed keys and return different result if key has already been seen. This can be done using memoization:

def get_key_watcher():
    keys_seen = set()
    def key_not_seen(d):
        key = d['key']
        if key in keys_seen:
            return False  # key is not new
        else:
            keys_seen.add(key)
            return True  # key seen for the first time
    return key_not_seen

Then you could use it like this:

>>> filtered_dicts = filter(get_key_watcher(), dicts)
>>> filtered_dicts
[{'ppm_error': -5.441115144810845e-07, 'obs_ion': 1054.5045550349998, 'key': 'Y7'},
 {'ppm_error': 2.3119997582222951e-07, 'obs_ion': 1047.547178035, 'key': 'Y9'},
 {'ppm_error': -2.5532659838679713e-06, 'obs_ion': 741.339467035, 'key': 'Y4'},
 {'ppm_error': 1.3036219678359603e-05, 'obs_ion': 1349.712302035, 'key': 'Y10'},
 {'ppm_error': 3.4259216556970878e-06, 'obs_ion': 941.424286035, 'key': 'Y6'},
 {'ppm_error': 1.1292770047090912e-06, 'obs_ion': 261.156025035, 'key': 'Y2'},
 {'ppm_error': 9.326980606898406e-06, 'obs_ion': 667.3107950350001, 'key': 'Y5'}]

It maintains order of dictionaries, obviously. And keeps the dictionary encountered first.




回答3:


convert it to a numpy array

a = numpy.array([(d["ppm_error"],d["key"],d["obs_ion"]) for d in my_dicts])
mask =numpy.unique(a[:,1],True)[1]
uniques = a[mask]

then back to a dict

unique_entries = map(dict,[zip(labels,row) for row in uniques])



回答4:


I would do it like this:

list = [...] # your list

finallist = dict(map(lambda x: (x['key'],x), list)).values()

Basically its the same solution @thefourtheye provides in his answer...



来源:https://stackoverflow.com/questions/22875991/removing-dicts-with-duplicate-value-from-list-of-dicts

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!