问题
I have an array of n positive real numbers
And I have to find out the Maximum Product Subarray for this given array.
How to implement DP Solution for the problem ?
Explain in detail the DP formulation of the solution.
回答1:
Since the solution for maximal sum is known, you can
- compute
log
of each array's item into another array - apply the known algorithm to the new array
exp
of the result is the answer.
(But you can just trivially adjust the existing algorithm, which is already mentioned in @nevets's answer. Replace the constant 0 (which is additive neutral element) with 1.)
回答2:
It's very similar to Maximum Sum of Subarray problem and a lot easier than Maximum Product of Subarray which allows negative number. The core ideas are the same: currentMax = max(a[i], some_operation(currentMax, a[i]))
.
For each element, we have 2 options: put it inside a consecutive subarray, or start a new subarray with it.
double currentMax = a[0];
for (int i = 1; i < size; i++)
{
currentMax = max(a[i], currentMax * a[i]);
best = max(best, currentMax);
}
回答3:
My code that passed Leetcode OJ:
class Solution {
public:
int maxProduct(int A[], int n) {
if (n==0) return 0;
int maxi = 1, mini = 1;
int out = INT_MIN;
for (int i=0;i<n;i++) {
int oldmaxi = max(maxi,1);
if (A[i] > 0) {
maxi = oldmaxi*A[i];
mini *= A[i];
} else {
maxi = mini*A[i];
mini = oldmaxi*A[i];
}
out = max(out,maxi);
}
return out;
}
};
Explanations could be found here: http://changhaz.wordpress.com/2014/09/23/leetcode-maximum-product-subarray/
回答4:
My Java solution which covers the case where the input array may contain negative numbers also:
public class MaximumProductSubarraySolver
{
public int maxProduct(int[] a)
{
int max_so_far = a[0];
int max_ending_here = a[0];
int min_ending_here = a[0];
for (int i = 1; i < a.length; i++)
{
int max1 = max_ending_here * a[i];
int min1 = min_ending_here * a[i];
max_ending_here = Math.max(a[i], Math.max(min1, max1));
min_ending_here = Math.min(a[i], Math.min(min1, max1));
max_so_far = Math.max(max_so_far, max_ending_here);
}
return max_so_far;
}
}
Accepted on Leetcode.
Update: The following (quite simple) optimization for finding min and max among the three numbers a[i]
, max1
, and min1
gives a huge performance jump:
public class MaximumProductSubarraySolver {
public int maxProduct(int[] a) {
int max_so_far, max_ending_here, min_ending_here;
max_so_far = max_ending_here = min_ending_here = a[0];
for (int i = 1; i < a.length; i++)
{
int max1 = max_ending_here * a[i];
int min1 = min_ending_here * a[i];
// find min and max among a[i], max1, and min1
// max_ending_here = max(a[i], max1, min1)
// min_ending_here = min(a[i], max1, min1)
if(a[i] >= min1)
{
if(min1 >= max1)
{
max_ending_here = a[i];
min_ending_here = max1;
}
else
{
// a[i] >= min1
// max1 > min1
min_ending_here = min1;
max_ending_here = a[i] >= max1 ? a[i] : max1;
}
}
else
{
// a[i] < min1
if(min1 <= max1)
{
max_ending_here = max1;
min_ending_here = a[i];
}
else
{
//a[i] < min1
//max1 < min1
max_ending_here = min1;
min_ending_here = a[i] <= max1 ? a[i] : max1;
}
}
if(max_ending_here > max_so_far)
{
max_so_far = max_ending_here;
}
}
return max_so_far;
}
}
Optimized code on Leetcode.
This lead to me thinking if I can simplify this code. This is what I came up with:
public class MaximumProductSubarraySolver {
public int maxProduct(int[] a) {
int max_so_far, max_ending_here, min_ending_here;
max_so_far = max_ending_here = min_ending_here = a[0];
for (int i = 1; i < a.length; i++)
{
if(a[i] < 0)
{
// when a[I] < 0
// max * a[i] will become min
// min * a[i] will become max
int t = max_ending_here;
max_ending_here = min_ending_here;
min_ending_here = t;
}
int max1 = max_ending_here * a[i];
int min1 = min_ending_here * a[i];
max_ending_here = a[i] > max1 ? a[i] : max1;
min_ending_here = a[i] < min1 ? a[i] : min1;
if(max_ending_here > max_so_far)
{
max_so_far = max_ending_here;
}
}
return max_so_far;
}
}
Accepted on Leetcode.
回答5:
for each the array, and update the max and min every time. min*A[i] maybe the max. and code is here, passed in leetcode:
public class Solution {
public int maxProduct(int[] A) {
int max = A[0];
int min = A[0];
int maxProduct = A[0];
for(int i = 1; i < A.length; i ++) {
int temp = max;
max = Math.max(Math.max(A[i], max*A[i]), min*A[i]);
min = Math.min(Math.min(A[i], min*A[i]), temp*A[i]);
if(max > maxProduct)
maxProduct = max;
}
return maxProduct;
}
}
回答6:
Here is an implementation is Ruby:
def max_subarray_product(arr)
maxi = 1
mini = 1
result = 0
arr.each do |i|
temp_max = maxi > 1 ? maxi : 1
if (i > 0)
maxi = temp_max*i
mini *= i
else
maxi = mini*i
mini = temp_max*i
end
result = maxi > result ? maxi : result
end
result
end
For Example:
a = [6, -3, -10, 0, 2]
puts maxsubarrayproduct(a)
Output:
180
回答7:
Example explanation:
input = [ 2, 3, -2, 4 ]
product_left_to_right = input = [ 2, 3, -2, 4 ]
product_right_to_left = input[::-1] = [ 4, -2, 3, 2 ]
1st iteration:
6 = 3 * 2 product_left_to_right = [ 2, 6, -2, 4 ]
-8 = -2 * 4 product_right_to_left = [ 4, -8, 3, 2 ]
2nd iteration:
-12 = -2 * 6 product_left_to_right = [ 2, 6, -12, 4 ]
-24 = 3 * -8 product_right_to_left = [ 4, -8, -24, 2 ]
3rd iteration:
-48 = 4 * -12 product_left_to_right = [ 2, 6, -12, -48 ]
-48 = 2 * -24 product_right_to_left = [ 4, -8, -24, -48 ]
comparison of max:
max of product_left_to_right = [ 2, 6, -12, -48 ] = 6
max of product_right_to_left = [ 4, -8, -24, -48 ] = 4
max of ( 6, 4 ) = 6
return 6
def maxProduct(self, nums: List[int]) -> int:
l = len(nums)
nums_l=nums //product_left_to_right
nums_r = nums[::-1] //product_right_to_left
for i in range(1,l,1):
nums_l[i] *= (nums_l[i-1] or 1) //if meets 0 then restart in-place by itself.
nums_r[i] *= (nums_r[i-1] or 1)
return max(max(nums_l), max(nums_r))
回答8:
Since numbers are all positive, multiple them all.
来源:https://stackoverflow.com/questions/25590930/maximum-product-subarray