Alternative segmentation techniques other than watershed for soil particles in images

爷,独闯天下 提交于 2020-03-17 09:14:22

问题


I am searching for an alternative way for segmenting the grains in the following image of soil grains other than watershed segmentation in python as it may mislead the right detection for the grains furthermore , I am working on the edge detection image ( using HED algorithm ) as attached .. I hope to find a better way to segment the grains for further processing as I would like to get the area of each polygon in the image in my project .. Thanks in advance I am asking also about random walker segmentation or any other available method.


回答1:


You could try using Connected Components with Stats already implemented as cv2.connectedComponentsWithStats to perform component labeling. Using your binary image as input, here's the false-color image:

The centroid of each object can be found in centroid parameter and other information such as area can be found in the status variable returned from cv2.connectedComponentsWithStats. Here's the image labeled with the area of each polygon. You could filter using a minimum threshold area to only keep larger polygons

Code

import cv2
import numpy as np

# Load image, Gaussian blur, grayscale, Otsu's threshold
image = cv2.imread('2.jpg')
blur = cv2.GaussianBlur(image, (3,3), 0)
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

# Perform connected component labeling
n_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh, connectivity=4)

# Create false color image and color background black
colors = np.random.randint(0, 255, size=(n_labels, 3), dtype=np.uint8)
colors[0] = [0, 0, 0]  # for cosmetic reason we want the background black
false_colors = colors[labels]

# Label area of each polygon
false_colors_area = false_colors.copy()
for i, centroid in enumerate(centroids[1:], start=1):
    area = stats[i, 4]
    cv2.putText(false_colors_area, str(area), (int(centroid[0]), int(centroid[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)

cv2.imshow('thresh', thresh)
cv2.imshow('false_colors', false_colors)
cv2.imshow('false_colors_area', false_colors_area)
cv2.waitKey()



回答2:


I used U-Net for another application, and your case is very similar to what U-Net do. You can find more information here. But generally, it is a convolutional neural network for medical image segmentation.

To start using U-Net, you can find a pre-trained model and apply it on your images and see the result.



来源:https://stackoverflow.com/questions/60345906/alternative-segmentation-techniques-other-than-watershed-for-soil-particles-in-i

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!