import pandas as pd
from datetime import date, timedelta
# skiprows 跳过前面的多少行
# usecols 读取excel中选中的列
# index_col 使用作为索引列的列名
# dtype 根据列名,设置列的数据类型
books = pd.read_excel('D:/output.xlsx', skiprows=4, usecols='D:H',
index_col='idx', dtype={'ID2':str, 'DateM':str, 'Ready':str})
#print(books)
#print(books['ID2'])
#print(type(books['ID2']))
#books['ID2'].at[0] = 100
#print(books['ID2'])
# NaN的数值类型默认为float类型
start = date(2020, 2, 1)
for i in books.index:
books['ID2'].at[i] = i+100
# 与上一行代码等同效果
books.at[i, 'ID2'] = i+101
# 实现隔行输出
books['Ready'].at[i] = 'Yes'if i%2==0 else 'No'
# timedelta 只能添加以下类型
#days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks
books['DateM'].at[i] = start + timedelta(days=i)
books['DateM'].at[i] = date(start.year+i, start.month, start.day)
print(books)
books.to_excel('D:/output.xlsx')
视频地址: https://www.bilibili.com/video/av88814463?p=4 https://www.bilibili.com/video/av88814463?p=5
来源:oschina
链接:https://my.oschina.net/ski/blog/3179411