《机器学习》西瓜书第四章决策树

倾然丶 夕夏残阳落幕 提交于 2020-02-06 05:50:29

本章主要对决策树算法进行了讲解,主要有决策树的生成过程、决策树的划分选择、决策树的剪枝处理、连续与缺失值的处理以及多变量决策树。

4.1 基本流程

决策树是基于树的结构来进行决策的。包含一个根节点、若干内部节点和若干叶节点。叶节点对应于决策结果,其他每个结点对应于一个属性测试。

决策树学习的目的是产生一颗泛化能力强的决策树,其基本流程遵循简单的“分而治之”策略。

决策树学习的基本算法

输入:训练集D = {(x1,y1),(x2,y2),...,(xn,yn)};

        属性集 A = {a1,a2,...,ad}

过程:函数TreeGenerate(D,A)

1.生成结点node;

if D中样本全属于同一类别C then

     将node标记为C类叶节点;return;

end if;

if A = 空集 OR D中样本在A上取值相同 then

    将node标记为叶节点,其类别标记为D中样本数最多的类;return

end if

从A中选择最有划分属性a*;

for a* 的每一个值 av do

   为node生成一个分支;令Dv表示D中在a*上取值为av的样本子集;

   if Dv为空 then

       将分支结点标记为叶节点,其类别标记为D中样本最多的类;return

   else

      以TreeGenerate(Dv,A\{a*})为分支结点

   end if

end for

输出:以node为根节点的一棵决策树。

4.2划分选择

我们希望决策树分支结点所包含的样本尽可能属于同一类别。

4.2.1 信息增益

“信息熵”-----度量样本纯度的指标,信息熵值越小,纯度越高。

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!