How to modify a mask to make it perfect circle

北城以北 提交于 2020-01-30 02:34:33

问题


I have masks of imperfect circle like this one. How can I use opencv contour function (or any other way) to remove the artifacts in the top-right corner?

Here is the data,:

mask = np.array([
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,255,255,255],
[0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,255,255,255],
[0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,255,255,255,255],
[0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,255,255,255,255],
[0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,255,255,255,255,255],
[0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,255,255,255,255,255],
[0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255],
[0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255],
[0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,255,255],
[0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0],
[0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0],
[0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0],
[0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0],
[0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0],
[0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0],
[0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0],
[0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0],
[0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0],
[0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0],
[0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], dtype=np.uint8)


回答1:


An approach is to Otsu's threshold the image to obtain a binary image. From here, we perform morphological opening with a elliptical shaped kernel. This step will effectively remove the extra artifacts but will distort the circle a bit. To repair the circle, we find contours and use cv2.minEnclosingCircle() then draw this onto a mask to get a perfect circle.


Here's the visualization of each step:

I took a screenshot of your image without the grid lines. Input image:

Otsu's threshold to obtain a binary image

Morph opening with elliptical shaped kernel

Result from cv2.minEnclosingCircle() and the resulting contour drawn onto a mask

Code

import cv2
import numpy as np

# Load image, convert to grayscale, then Otsu's threshold
image = cv2.imread('1.png')
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

# Morph open with a elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (75,75))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=4)

# Find contours and create perfect circle on mask
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    ((x, y), r) = cv2.minEnclosingCircle(c)
    cv2.circle(image, (int(x), int(y)), int(r), (36, 255, 12), 3)
    cv2.circle(mask, (int(x), int(y)), int(r), (255, 255, 255), -1)

cv2.imshow('thresh', thresh)
cv2.imshow('opening', opening)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.waitKey()

If you don't have an image and instead have a np.array, the process stays the same but you can skip the threshold step. Also depending on how large the image is, you may have to adjust the kernel size. For instance, changing it from (75, 75) to say (10, 10). You could also experiment with the number of iterations to perform morph opening. Here's an example of how to do it if you had an np.array of points that formed the image

Input image -> Morph open -> Result

Code

import cv2
import numpy as np

mask = np.array([ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,255,255,255], [0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,255,255,255], [0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,255,255,255,255], [0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,255,255,255,255], [0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,255,255,255,255,255], [0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,255,255,255,255,255], [0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,255,255], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0], [0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0], [0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0], [0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], dtype=np.uint8)

# Create blank image with the same size as mask
image = np.zeros(mask.shape, dtype=np.uint8)

# Morph open with a elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10,10))
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)

# Find contours and create perfect circle on mask
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    ((x, y), r) = cv2.minEnclosingCircle(c)
    cv2.circle(image, (int(x), int(y)), int(r), (255, 255, 255), -1)

cv2.imshow('opening', opening)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.waitKey()


来源:https://stackoverflow.com/questions/59329583/how-to-modify-a-mask-to-make-it-perfect-circle

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!