问题
My input images have 8 channels and my output (label) has 1 channel and my CNN in keras is like below:
def set_model(ks1=5, ks2=5, nf1=64, nf2=1):
model = Sequential()
model.add(Conv2D(nf1, padding="same", kernel_size=(ks1, ks1),
activation='relu', input_shape=(62, 62, 8)))
model.add(Conv2D(nf2, padding="same", kernel_size=(ks2, ks2),
activation='relu'))
model.compile(loss=keras.losses.binary_crossentropy,
optimizer=keras.optimizers.Adadelta())
return model
The filter I have here is the same for all 8 channels. What I would like to have is a 3D filter, something like (8, 5, 5) such that every channel has a separate filter because these channels have not the same importance.
Below is the summary of the model implemented above:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 62, 62, 64) 12864
_________________________________________________________________
conv2d_2 (Conv2D) (None, 62, 62, 1) 1601
=================================================================
Total params: 14,465
Trainable params: 14,465
Non-trainable params: 0
_________________________________________________________________
And when I get the shape of weights for the first layer I have the following results:
for layer in model.layers:
weights = layer.get_weights()
len(weights)
2
a = np.array(weights[0])
a.shape
(5, 5, 64, 1)
And I am wondering where is 8 in the shape of weights of the first layer?
来源:https://stackoverflow.com/questions/50992263/how-to-have-a-3d-filter-for-conv2d-in-keras