问题
I see there is an array_split
and split
methods but these are not very handy when you have to split an array of length which is not integer multiple of the chunk size. Moreover, these methods input is the number of slices rather than the slice size. I need something more like Matlab's buffer method which is more suitable for signal processing.
For example, if I want to buffer a signals to chunks of size 60 I need to do: np.vstack(np.hsplit(x.iloc[0:((len(x)//60)*60)], len(x)//60))
which is cumbersome.
回答1:
I wrote the following routine to handle the use cases I needed, but I have not implemented/tested for "underlap".
Please feel free to make suggestions for improvement.
def buffer(X, n, p=0, opt=None):
'''Mimic MATLAB routine to generate buffer array
MATLAB docs here: https://se.mathworks.com/help/signal/ref/buffer.html
Parameters
----------
x: ndarray
Signal array
n: int
Number of data segments
p: int
Number of values to overlap
opt: str
Initial condition options. default sets the first `p` values to zero,
while 'nodelay' begins filling the buffer immediately.
Returns
-------
result : (n,n) ndarray
Buffer array created from X
'''
import numpy as np
if opt not in [None, 'nodelay']:
raise ValueError('{} not implemented'.format(opt))
i = 0
first_iter = True
while i < len(X):
if first_iter:
if opt == 'nodelay':
# No zeros at array start
result = X[:n]
i = n
else:
# Start with `p` zeros
result = np.hstack([np.zeros(p), X[:n-p]])
i = n-p
# Make 2D array and pivot
result = np.expand_dims(result, axis=0).T
first_iter = False
continue
# Create next column, add `p` results from last col if given
col = X[i:i+(n-p)]
if p != 0:
col = np.hstack([result[:,-1][-p:], col])
i += n-p
# Append zeros if last row and not length `n`
if len(col) < n:
col = np.hstack([col, np.zeros(n-len(col))])
# Combine result with next row
result = np.hstack([result, np.expand_dims(col, axis=0).T])
return result
回答2:
def buffer(X = np.array([]), n = 1, p = 0):
#buffers data vector X into length n column vectors with overlap p
#excess data at the end of X is discarded
n = int(n) #length of each data vector
p = int(p) #overlap of data vectors, 0 <= p < n-1
L = len(X) #length of data to be buffered
m = int(np.floor((L-n)/(n-p)) + 1) #number of sample vectors (no padding)
data = np.zeros([n,m]) #initialize data matrix
for startIndex,column in zip(range(0,L-n,n-p),range(0,m)):
data[:,column] = X[startIndex:startIndex + n] #fill in by column
return data
回答3:
Same as the other answer, but faster.
def buffer(X, n, p=0):
'''
Parameters
----------
x: ndarray
Signal array
n: int
Number of data segments
p: int
Number of values to overlap
Returns
-------
result : (n,m) ndarray
Buffer array created from X
'''
import numpy as np
d = n - p
m = len(X)//d
if m * d != len(X):
m = m + 1
Xn = np.zeros(d*m)
Xn[:len(X)] = X
Xn = np.reshape(Xn,(m,d))
Xne = np.concatenate((Xn,np.zeros((1,d))))
Xn = np.concatenate((Xn,Xne[1:,0:p]), axis = 1)
return np.transpose(Xn[:-1])
来源:https://stackoverflow.com/questions/38453249/is-there-a-matlabs-buffer-equivalent-in-numpy