BZOJ 3992
点开这道题之后才发现我对原根的理解大概只停留在$998244353$的原根是$3$……
关于原根: 点我
首先写出$dp$方程,设$f_{i, j}$表示序列长度为$i$当前所有数乘积模$m$为$j$的方案数,有转移
$$f_{i, x * y \mod m} = \sum_{y \in s} f_{i - 1, x}$$
把$x$和$y$取个对数就可以变成卷积的形式了。
然而在模意义下,我们可以用原根的$k$次方来代替原来的数,这样子就达到了取对数的效果。
注意到每一次转移形式都是相同的,我们可以用快速幂的方式来优化。
时间复杂度$O(mlogmlogn)$。
然而我的代码只有在有$c++11$的时候才是对的,哪位大佬如果知道了为什么教教我呗。
Code:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
typedef vector <ll> poly;
const int N = 8005;
int n, m, tar, fac[N], buc[N];
namespace Poly {
const int L = 1 << 14;
const ll P = 1004535809LL;
int lim, pos[L];
template <typename T>
inline void inc(T &x, T y) {
x += y;
if (x >= P) x -= P;
}
inline ll fpow(ll x, ll y, ll mod = P) {
ll res = 1;
for (; y > 0; y >>= 1) {
if (y & 1) res = res * x % mod;
x = x * x % mod;
}
return res;
}
inline void prework(int len) {
int l = 0;
for (lim = 1; lim < len; lim <<= 1, ++l);
for (int i = 0; i < lim; i++)
pos[i] = (pos[i >> 1] >> 1) | ((i & 1) << (l - 1));
}
inline void ntt(poly &c, int opt) {
c.resize(lim, 0);
for (int i = 0; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = 1; i < lim; i <<= 1) {
ll wn = fpow(3, (P - 1) / (i << 1));
if (opt == -1) wn = fpow(wn, P - 2);
for (int len = i << 1, j = 0; j < lim; j += len) {
ll w = 1;
for (int k = 0; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = w * c[j + k + i] % P;
c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P;
}
}
}
if (opt == -1) {
ll inv = fpow(lim, P - 2);
for (int i = 0; i < lim; i++) c[i] = c[i] * inv % P;
}
}
poly operator * (const poly x, const poly y) {
poly u = x, v = y, res;
prework(x.size() + y.size() - 1);
ntt(u, 1), ntt(v, 1);
for (int i = 0; i < lim; i++) res.push_back(u[i] * v[i] % P);
ntt(res, -1);
res.resize(x.size() + y.size() - 1);
return res;
}
inline void adj(poly &c) {
for (int i = 0; i < m - 1; i++) inc(c[i], c[i + m - 1]);
c.resize(m - 1);
}
inline poly pow(poly x, int y) {
poly res;
res.resize(m - 1);
res[0] = 1;
for (; y; y >>= 1) {
if (y & 1) res = res * x, adj(res);
x = x * x, adj(x);
}
return res;
}
}
using Poly :: P;
using Poly :: fpow;
using Poly :: pow;
template <typename T>
inline void read(T &X) {
X = 0; char ch = 0; T op = 1;
for (; ch > '9'|| ch < '0'; ch = getchar())
if (ch == '-') op = -1;
for (; ch >= '0' && ch <= '9'; ch = getchar())
X = (X << 3) + (X << 1) + ch - 48;
X *= op;
}
inline int getRoot() {
int cnt = 0;
for (int i = 2; i <= m - 2; i++)
if ((m - 1) % i == 0) fac[++cnt] = i;
for (int i = 2; ; i++) {
bool flag = 1;
for (int j = 1; j <= cnt; j++)
if (fpow(i, fac[j], m) == 1) {
flag = 0;
break;
}
if (flag) return i;
}
}
int main() {
/* #ifndef ONLINE_JUDGE
freopen("8.in", "r", stdin);
#endif */
int s, root;
read(n), read(m), read(tar), read(s);
root = getRoot();
for (int i = 1; i <= m - 2; i++) buc[fpow(root, i, m)] = i;
poly trans;
trans.resize(m - 1);
for (int x, i = 1; i <= s; i++) {
read(x);
if (!x) continue;
trans[buc[x]] = 1;
}
poly ans = pow(trans, n);
printf("%lld\n", ans[buc[tar]]);
return 0;
}
来源:https://www.cnblogs.com/CzxingcHen/p/10289484.html
