LeetCode 561. Array Partition I(Easy)

自古美人都是妖i 提交于 2019-12-26 11:40:03

Description:
Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), …, (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

Example 1:

Input: [1,4,3,2]

Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).

Note:

  1. n is a positive integer, which is in the range of [1, 10000].
  2. All the integers in the array will be in the range of [-10000, 10000].

Analysis:
min{ai,bi}=ai+bi2biai2min\{a_{i}, b_{i}\} = \frac{a_{i} + b_{i}}{2} - \frac{b_{i} - a_{i}}{2}(Assume aibia_{i} \leq b_{i})
sum=a1+b1+a2+b2++ai+bi2(b1a1)+(b2a2)++(bnan)2sum = \frac{a_{1} + b_{1} + a_{2} + b_{2} + \dots + a_{i}+ b_{i}}{2} - \frac{(b_{1} - a_{1}) + (b_{2} - a_{2}) + \dots +(b_{n} - a_{n})}{2}
To get the maximum of sumsum, we need to make sure (b1a1)+(b2a2)++(bnan)(b_{1} - a_{1}) + (b_{2} - a_{2}) + \dots +(b_{n} - a_{n}) is minimal. What’s more, if and only if the array is sorted in an increasing order, (b1a1)+(b2a2)++(bnan)(b_{1} - a_{1}) + (b_{2} - a_{2}) + \dots +(b_{n} - a_{n}) will be minimal.


Code:

class Solution {
    public int arrayPairSum(int[] nums) {
        Arrays.sort(nums);
        int sum = 0;
        for(int i = 0; i < nums.length; i+=2) {
            sum += nums[i];
        }
        return sum;
    }
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!