问题
I have tested a large sample of participants on two different tests of visual perception – now, I'd like to see to what extent performance on both tests correlates.
To visualise the correlation, I plot a scatterplot in R using ggplot()
and I fit a regression line (using stat_smooth()
). However, since both my x
and y
variable are performance measures, I need to take both of them into account when fitting my regression line – thus, I cannot use a simple linear regression (using stat_smooth(method="lm")
), but rather need to fit an orthogonal regression (or Total least squares). How would I go about doing this?
I know I can specify formula
in stat_smooth()
, but I wouldn't know what formula to use. From what I understand, none of the preset methods (lm, glm, gam, loess, rlm
) are applicable.
回答1:
It turns out that you can extract the slope and intercept from principal components analysis on (x,y), as shown here. This is just a little simpler, runs in base R, and gives the identical result to using Deming(...)
in MethComp
.
# same `x and `y` as @user20650's answer
df <- data.frame(y, x)
pca <- prcomp(~x+y, df)
slp <- with(pca, rotation[2,1] / rotation[1,1])
int <- with(pca, center[2] - slp*center[1])
ggplot(df, aes(x,y)) +
geom_point() +
stat_smooth(method=lm, color="green", se=FALSE) +
geom_abline(slope=slp, intercept=int, color="blue")

回答2:
Caveat: not familiar with this method
I think you should be able to just pass the slope
and intercept
to geom_abline
to produce the fitted line. Alternatively, you could define your own method to pass to stat_smooth
(as shown at the link smooth.Pspline wrapper for stat_smooth (in ggplot2)). I used the Deming
function from the MethComp
package as suggested at link How to calculate Total least squares in R? (Orthogonal regression).
library(MethComp)
library(ggplot2)
# Sample data and model (from ?Deming example)
set.seed(1)
M <- runif(100,0,5)
# Measurements:
x <- M + rnorm(100)
y <- 2 + 3 * M + rnorm(100,sd=2)
# Deming regression
mod <- Deming(x,y)
# Define functions to pass to stat_smooth - see mnel's answer at link for details
# Defined the Deming model output as class Deming to define the predict method
# I only used the intercept and slope for predictions - is this correct?
f <- function(formula,data,SDR=2,...){
M <- model.frame(formula, data)
d <- Deming(x =M[,2],y =M[,1], sdr=SDR)[1:2]
class(d) <- "Deming"
d
}
# an s3 method for predictdf (called within stat_smooth)
predictdf.Deming <- function(model, xseq, se, level) {
pred <- model %*% t(cbind(1, xseq) )
data.frame(x = xseq, y = c(pred))
}
ggplot(data.frame(x,y), aes(x, y)) + geom_point() +
stat_smooth(method = f, se= FALSE, colour='red', formula=y~x, SDR=1) +
geom_abline(intercept=mod[1], slope=mod[2], colour='blue') +
stat_smooth(method = "lm", se= FALSE, colour='green', formula = y~x)

So passing the intercept and slope to geom_abline
produces the same fitted line (as expected). So if this is the correct approach then imo its easier to go with this.
回答3:
The MethComp
package seems to be no longer maintained (was removed from CRAN).
Russel88/COEF allows to use stat_
/geom_summary
with method="tls"
to add an orthogonal regression line.
Based on this and wikipedia:Deming_regression I created the following functions, which allow to use noise ratios other than 1:
deming.fit <- function(x, y, noise_ratio = sd(y)/sd(x)) {
if(missing(noise_ratio) || is.null(noise_ratio)) noise_ratio <- eval(formals(sys.function(0))$noise_ratio) # this is just a complicated way to write `sd(y)/sd(x)`
delta <- noise_ratio^2
x_name <- deparse(substitute(x))
s_yy <- var(y)
s_xx <- var(x)
s_xy <- cov(x, y)
beta1 <- (s_yy - delta*s_xx + sqrt((s_yy - delta*s_xx)^2 + 4*delta*s_xy^2)) / (2*s_xy)
beta0 <- mean(y) - beta1 * mean(x)
res <- c(beta0 = beta0, beta1 = beta1)
names(res) <- c("(Intercept)", x_name)
class(res) <- "Deming"
res
}
deming <- function(formula, data, R = 100, noise_ratio = NULL, ...){
ret <- boot::boot(
data = model.frame(formula, data),
statistic = function(data, ind) {
data <- data[ind, ]
args <- rlang::parse_exprs(colnames(data))
names(args) <- c("y", "x")
rlang::eval_tidy(rlang::expr(deming.fit(!!!args, noise_ratio = noise_ratio)), data, env = rlang::current_env())
},
R=R
)
class(ret) <- c("Deming", class(ret))
ret
}
predictdf.Deming <- function(model, xseq, se, level) {
pred <- as.vector(tcrossprod(model$t0, cbind(1, xseq)))
if(se) {
preds <- tcrossprod(model$t, cbind(1, xseq))
data.frame(
x = xseq,
y = pred,
ymin = apply(preds, 2, function(x) quantile(x, probs = (1-level)/2)),
ymax = apply(preds, 2, function(x) quantile(x, probs = 1-((1-level)/2)))
)
} else {
return(data.frame(x = xseq, y = pred))
}
}
# unrelated hlper function to create a nicer plot:
fix_plot_limits <- function(p) p + coord_cartesian(xlim=ggplot_build(p)$layout$panel_params[[1]]$x.range, ylim=ggplot_build(p)$layout$panel_params[[1]]$y.range)
Demonstration:
library(ggplot2)
#devtools::install_github("Russel88/COEF")
library(COEF)
fix_plot_limits(
ggplot(data.frame(x = (1:5) + rnorm(100), y = (1:5) + rnorm(100)*2), mapping = aes(x=x, y=y)) +
geom_point()
) +
geom_smooth(method=deming, aes(color="deming"), method.args = list(noise_ratio=2)) +
geom_smooth(method=lm, aes(color="lm")) +
geom_smooth(method = COEF::tls, aes(color="tls"))

Created on 2019-12-04 by the reprex package (v0.3.0)
来源:https://stackoverflow.com/questions/26995923/ggplot2-how-to-plot-an-orthogonal-regression-line