Implementing Table-Lookup-Based Trig Functions

安稳与你 提交于 2019-12-24 03:28:08

问题


For a videogame I'm implementing in my spare time, I've tried implementing my own versions of sinf(), cosf(), and atan2f(), using lookup tables. The intent is to have implementations that are faster, although with less accuracy.

My initial implementation is below. The functions work, and return good approximate values. The only problem is that they are slower than calling the standard sinf(), cosf(), and atan2f() functions.

So, what am I doing wrong?

// Geometry.h includes definitions of PI, TWO_PI, etc., as
// well as the prototypes for the public functions
#include "Geometry.h"

namespace {
    // Number of entries in the sin/cos lookup table
    const int SinTableCount = 512;

    // Angle covered by each table entry
    const float SinTableDelta = TWO_PI / (float)SinTableCount;

    // Lookup table for Sin() results
    float SinTable[SinTableCount];

    // This object initializes the contents of the SinTable array exactly once
    class SinTableInitializer {
    public:
        SinTableInitializer() {
            for (int i = 0; i < SinTableCount; ++i) {
                SinTable[i] = sinf((float)i * SinTableDelta);
            }
        }
    };
    static SinTableInitializer sinTableInitializer;

    // Number of entries in the atan lookup table
    const int AtanTableCount = 512;

    // Interval covered by each Atan table entry
    const float AtanTableDelta = 1.0f / (float)AtanTableCount;

    // Lookup table for Atan() results
    float AtanTable[AtanTableCount];

    // This object initializes the contents of the AtanTable array exactly once
    class AtanTableInitializer {
    public:
        AtanTableInitializer() {
            for (int i = 0; i < AtanTableCount; ++i) {
                AtanTable[i] = atanf((float)i * AtanTableDelta);
            }
        }
    };
    static AtanTableInitializer atanTableInitializer;

    // Lookup result in table.
    // Preconditions: y > 0, x > 0, y < x
    static float AtanLookup2(float y, float x) {
        assert(y > 0.0f);
        assert(x > 0.0f);
        assert(y < x);

        const float ratio = y / x;
        const int index = (int)(ratio / AtanTableDelta);
        return AtanTable[index];    
    }

}

float Sin(float angle) {
    // If angle is negative, reflect around X-axis and negate result
    bool mustNegateResult = false;
    if (angle < 0.0f) {
        mustNegateResult = true;
        angle = -angle;
    }

    // Normalize angle so that it is in the interval (0.0, PI)
    while (angle >= TWO_PI) {
        angle -= TWO_PI;
    }

    const int index = (int)(angle / SinTableDelta);
    const float result = SinTable[index];

    return mustNegateResult? (-result) : result;
}

float Cos(float angle) {
    return Sin(angle + PI_2);
}

float Atan2(float y, float x) {
    // Handle x == 0 or x == -0
    // (See atan2(3) for specification of sign-bit handling.)
    if (x == 0.0f) {
        if (y > 0.0f) {
            return PI_2;
        }
        else if (y < 0.0f) {
            return -PI_2;
        }
        else if (signbit(x)) {
            return signbit(y)? -PI : PI;
        }
        else {
            return signbit(y)? -0.0f : 0.0f;
        }
    }

    // Handle y == 0, x != 0
    if (y == 0.0f) {
        return (x > 0.0f)? 0.0f : PI;
    }

    // Handle y == x
    if (y == x) {
        return (x > 0.0f)? PI_4 : -(3.0f * PI_4);
    }

    // Handle y == -x
    if (y == -x) {
        return (x > 0.0f)? -PI_4 : (3.0f * PI_4);
    }

    // For other cases, determine quadrant and do appropriate lookup and calculation
    bool right = (x > 0.0f);
    bool top = (y > 0.0f);
    if (right && top) {
        // First quadrant
        if (y < x) {
            return AtanLookup2(y, x);
        }
        else {
            return PI_2 - AtanLookup2(x, y);
        }
    }
    else if (!right && top) {
        // Second quadrant
        const float posx = fabsf(x);
        if (y < posx) {
            return PI - AtanLookup2(y, posx);
        }
        else {
            return PI_2 + AtanLookup2(posx, y);
        }
    }
    else if (!right && !top) {
        // Third quadrant
        const float posx = fabsf(x);
        const float posy = fabsf(y);
        if (posy < posx) {
            return -PI + AtanLookup2(posy, posx);
        }
        else {
            return -PI_2 - AtanLookup2(posx, posy);
        }
    }
    else { // right && !top
        // Fourth quadrant
        const float posy = fabsf(y);
        if (posy < x) {
            return -AtanLookup2(posy, x);
        }
        else {
            return -PI_2 + AtanLookup2(x, posy);
        }
    }

    return 0.0f;
}

回答1:


"Premature optimization is the root of all evil" - Donald Knuth

Nowadays compilers provide very efficient intrinsics for trigonometric functions that get the best from modern processors (SSE etc.), which explains why you can hardly beat the built-in functions. Don't lose too much time on these parts and instead concentrate on the real bottlenecks that you can spot with a profiler.




回答2:


Remember you have a co-processor ... you would have seen an increase in speed if it were 1993 ... however today you will struggle to beat native intrinsics.

Try viewing the disassebly to sinf.




回答3:


Someone has already benchmarked this, and it looks as though the Trig.Math functions are already optimized, and will be faster than any lookup table you can come up with:

http://www.tommti-systems.de/go.html?http://www.tommti-systems.de/main-Dateien/reviews/languages/benchmarks.html

(They didn't use anchors on the page so you have to scroll about 1/3 of the way down)




回答4:


I'm worried by this place:

// Normalize angle so that it is in the interval (0.0, PI)
while (angle >= TWO_PI) {
    angle -= TWO_PI;
}

But you can: Add time-meters to all functions, write special performance tests, run performance tests, print report of time test.. I think you will know answer after this tests.

Also you could use some profiling tools such as AQTime.




回答5:


The built-in functions are very well optimized already, so it's going to be REALLY tough to beat them. Personally, I'd look elsewhere for places to gain performance.

That said, one optimization I can see in your code:

// Normalize angle so that it is in the interval (0.0, PI)
while (angle >= TWO_PI) {
    angle -= TWO_PI;
}

Could be replaced with:

angle = fmod(angle, TWO_PI);


来源:https://stackoverflow.com/questions/650797/implementing-table-lookup-based-trig-functions

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!