问题
Converting a collaborative filtering code to use sparse matrices I'm puzzling on the following problem: given two full matrices X (m by l) and Theta (n by l), and a sparse matrix R (m by n), is there a fast way to calculate the sparse inner product . Large dimensions are m and n (order 100000), while l is small (order 10). This is probably a fairly common operation for big data since it shows up in the cost function of most linear regression problems, so I'd expect a solution built into scipy.sparse, but I haven't found anything obvious yet.
The naive way to do this in python is R.multiply(XTheta.T), but this will result in evaluation of the full matrix XTheta.T (m by n, order 100000**2) which occupies too much memory, then dumping most of the entries since R is sparse.
There is a pseudo solution already here on stackoverflow, but it is non-sparse in one step:
def sparse_mult_notreally(a, b, coords):
rows, cols = coords
rows, r_idx = np.unique(rows, return_inverse=True)
cols, c_idx = np.unique(cols, return_inverse=True)
C = np.array(np.dot(a[rows, :], b[:, cols])) # this operation is dense
return sp.coo_matrix( (C[r_idx,c_idx],coords), (a.shape[0],b.shape[1]) )
This works fine, and fast, for me on small enough arrays, but it barfs on my big datasets with the following error:
... in sparse_mult(a, b, coords)
132 rows, r_idx = np.unique(rows, return_inverse=True)
133 cols, c_idx = np.unique(cols, return_inverse=True)
--> 134 C = np.array(np.dot(a[rows, :], b[:, cols])) # this operation is not sparse
135 return sp.coo_matrix( (C[r_idx,c_idx],coords), (a.shape[0],b.shape[1]) )
ValueError: array is too big.
A solution which IS actually sparse, but very slow, is:
def sparse_mult(a, b, coords):
rows, cols = coords
n = len(rows)
C = np.array([ float(a[rows[i],:]*b[:,cols[i]]) for i in range(n) ]) # this is sparse, but VERY slow
return sp.coo_matrix( (C,coords), (a.shape[0],b.shape[1]) )
Does anyone know a fast, fully sparse way to do this?
回答1:
I profiled 4 different solutions to your problem, and it looks like for any size of the array, the numba jit solution is the best. A close second is @Alexander's cython solution.
Here are the results (M is the number of rows in the x
array):
M = 1000
function sparse_dense took 0.03 sec.
function sparse_loop took 0.07 sec.
function sparse_numba took 0.00 sec.
function sparse_cython took 0.09 sec.
M = 10000
function sparse_dense took 2.88 sec.
function sparse_loop took 0.68 sec.
function sparse_numba took 0.00 sec.
function sparse_cython took 0.01 sec.
M = 100000
function sparse_dense ran out of memory
function sparse_loop took 6.84 sec.
function sparse_numba took 0.09 sec.
function sparse_cython took 0.12 sec.
The script I used to profile these methods is:
import numpy as np
from scipy.sparse import coo_matrix
from numba import autojit, jit, float64, int32
import pyximport
pyximport.install(setup_args={"script_args":["--compiler=mingw32"],
"include_dirs":np.get_include()},
reload_support=True)
def sparse_dense(a,b,c):
return coo_matrix(c.multiply(np.dot(a,b)))
def sparse_loop(a,b,c):
"""Multiply sparse matrix `c` by np.dot(a,b) by looping over non-zero
entries in `c` and using `np.dot()` for each entry."""
N = c.size
data = np.empty(N,dtype=float)
for i in range(N):
data[i] = c.data[i]*np.dot(a[c.row[i],:],b[:,c.col[i]])
return coo_matrix((data,(c.row,c.col)),shape=(a.shape[0],b.shape[1]))
#@autojit
def _sparse_mult4(a,b,cd,cr,cc):
N = cd.size
data = np.empty_like(cd)
for i in range(N):
num = 0.0
for j in range(a.shape[1]):
num += a[cr[i],j]*b[j,cc[i]]
data[i] = cd[i]*num
return data
_fast_sparse_mult4 = \
jit(float64[:,:](float64[:,:],float64[:,:],float64[:],int32[:],int32[:]))(_sparse_mult4)
def sparse_numba(a,b,c):
"""Multiply sparse matrix `c` by np.dot(a,b) using Numba's jit."""
assert c.shape == (a.shape[0],b.shape[1])
data = _fast_sparse_mult4(a,b,c.data,c.row,c.col)
return coo_matrix((data,(c.row,c.col)),shape=(a.shape[0],b.shape[1]))
def sparse_cython(a, b, c):
"""Computes c.multiply(np.dot(a,b)) using cython."""
from sparse_mult_c import sparse_mult_c
data = np.empty_like(c.data)
sparse_mult_c(a,b,c.data,c.row,c.col,data)
return coo_matrix((data,(c.row,c.col)),shape=(a.shape[0],b.shape[1]))
def unique_rows(a):
a = np.ascontiguousarray(a)
unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))
if __name__ == '__main__':
import time
for M in [1000,10000,100000]:
print 'M = %i' % M
N = M + 2
L = 10
x = np.random.rand(M,L)
t = np.random.rand(N,L).T
# number of non-zero entries in sparse r matrix
S = M*10
row = np.random.randint(M,size=S)
col = np.random.randint(N,size=S)
# remove duplicate rows and columns
row, col = unique_rows(np.dstack((row,col)).squeeze()).T
data = np.random.rand(row.size)
r = coo_matrix((data,(row,col)),shape=(M,N))
a2 = sparse_loop(x,t,r)
for f in [sparse_dense,sparse_loop,sparse_numba,sparse_cython]:
t0 = time.time()
try:
a = f(x,t,r)
except MemoryError:
print 'function %s ran out of memory' % f.__name__
continue
elapsed = time.time()-t0
try:
diff = abs(a-a2)
if diff.nnz > 0:
assert np.max(abs(a-a2).data) < 1e-5
except AssertionError:
print f.__name__
raise
print 'function %s took %.2f sec.' % (f.__name__,elapsed)
The cython function is a slightly modified version of @Alexander's code:
# working from tutorial at: http://docs.cython.org/src/tutorial/numpy.html
cimport numpy as np
# Turn bounds checking back on if there are ANY problems!
cimport cython
@cython.boundscheck(False) # turn of bounds-checking for entire function
def sparse_mult_c(np.ndarray[np.float64_t, ndim=2] a,
np.ndarray[np.float64_t, ndim=2] b,
np.ndarray[np.float64_t, ndim=1] data,
np.ndarray[np.int32_t, ndim=1] rows,
np.ndarray[np.int32_t, ndim=1] cols,
np.ndarray[np.float64_t, ndim=1] out):
cdef int n = rows.shape[0]
cdef int k = a.shape[1]
cdef int i,j
cdef double num
for i in range(n):
num = 0.0
for j in range(k):
num += a[rows[i],j] * b[j,cols[i]]
out[i] = data[i]*num
回答2:
Based on the extra information on the comments, I think what's throwing you off is the call to np.unique
. Try the following approach:
import numpy as np
import scipy.sparse as sps
from numpy.core.umath_tests import inner1d
n = 100000
x = np.random.rand(n, 10)
theta = np.random.rand(n, 10)
rows = np.arange(n)
cols = np.arange(n)
np.random.shuffle(rows)
np.random.shuffle(cols)
def sparse_multiply(x, theta, rows, cols):
data = inner1d(x[rows], theta[cols])
return sps.coo_matrix((data, (rows, cols)),
shape=(x.shape[0], theta.shape[0]))
I get the following timings:
n = 1000
%timeit sparse_multiply(x, theta, rows, cols)
1000 loops, best of 3: 465 us per loop
n = 10000
%timeit sparse_multiply(x, theta, rows, cols)
100 loops, best of 3: 4.29 ms per loop
n = 100000
%timeit sparse_multiply(x, theta, rows, cols)
10 loops, best of 3: 61.5 ms per loop
And of course, with n = 100
:
>>> np.allclose(sparse_multiply(x, theta, rows, cols).toarray()[rows, cols],
x.dot(theta.T)[rows, cols])
>>> True
回答3:
Haven't tested Jaime's answer yet (thanks again!), but I implemented another answer that works in the meantime using cython.
file sparse_mult_c.pyx:
# working from tutorial at: http://docs.cython.org/src/tutorial/numpy.html
cimport numpy as np
# Turn bounds checking back on if there are ANY problems!
cimport cython
@cython.boundscheck(False) # turn of bounds-checking for entire function
def sparse_mult_c(np.ndarray[np.float64_t, ndim=2] a,
np.ndarray[np.float64_t, ndim=2] b,
np.ndarray[np.int32_t, ndim=1] rows,
np.ndarray[np.int32_t, ndim=1] cols,
np.ndarray[np.float64_t, ndim=1] C ):
cdef int n = rows.shape[0]
cdef int k = a.shape[1]
cdef int i,j
for i in range(n):
for j in range(k):
C[i] += a[rows[i],j] * b[j,cols[i]]
Then compile it as per http://docs.cython.org/src/userguide/tutorial.html
Then in my python code, I include the following:
def sparse_mult(a, b, coords):
#a,b are np.ndarrays
from sparse_mult_c import sparse_mult_c
rows, cols = coords
C = np.zeros(rows.shape[0])
sparse_mult_c(a,b,rows,cols,C)
return sp.coo_matrix( (C,coords), (a.shape[0],b.shape[1]) )
This works fully sparse and also runs faster than even the original (memory-inefficient for me) solution.
来源:https://stackoverflow.com/questions/18792096/subset-of-a-matrix-multiplication-fast-and-sparse