问题
I have a DataFrame
with a few time series:
divida movav12 var varmovav12
Date
2004-01 0 NaN NaN NaN
2004-02 0 NaN NaN NaN
2004-03 0 NaN NaN NaN
2004-04 34 NaN inf NaN
2004-05 30 NaN -0.117647 NaN
2004-06 44 NaN 0.466667 NaN
2004-07 35 NaN -0.204545 NaN
2004-08 31 NaN -0.114286 NaN
2004-09 30 NaN -0.032258 NaN
2004-10 24 NaN -0.200000 NaN
2004-11 41 NaN 0.708333 NaN
2004-12 29 24.833333 -0.292683 NaN
2005-01 31 27.416667 0.068966 0.104027
2005-02 28 29.750000 -0.096774 0.085106
2005-03 27 32.000000 -0.035714 0.075630
2005-04 30 31.666667 0.111111 -0.010417
2005-05 31 31.750000 0.033333 0.002632
2005-06 39 31.333333 0.258065 -0.013123
2005-07 36 31.416667 -0.076923 0.002660
I want to decompose the first time series divida
in a way that I can separate its trend from its seasonal and residual components.
I found an answer here, and am trying to use the following code:
import statsmodels.api as sm
s=sm.tsa.seasonal_decompose(divida.divida)
However I keep getting this error:
Traceback (most recent call last):
File "/Users/Pred_UnBR_Mod2.py", line 78, in <module> s=sm.tsa.seasonal_decompose(divida.divida)
File "/Library/Python/2.7/site-packages/statsmodels/tsa/seasonal.py", line 58, in seasonal_decompose _pandas_wrapper, pfreq = _maybe_get_pandas_wrapper_freq(x)
File "/Library/Python/2.7/site-packages/statsmodels/tsa/filters/_utils.py", line 46, in _maybe_get_pandas_wrapper_freq
freq = index.inferred_freq
AttributeError: 'Index' object has no attribute 'inferred_freq'
Can someone shine some light on it?
回答1:
Works fine when you convert your index
to DateTimeIndex
:
df.reset_index(inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df = df.set_index('Date')
s=sm.tsa.seasonal_decompose(df.divida)
<statsmodels.tsa.seasonal.DecomposeResult object at 0x110ec3710>
Access the components via:
s.resid
s.seasonal
s.trend
回答2:
Statsmodel will decompose the series only if you provide frequency. Usually all time series index will contain frequency eg: Daywise, Business days, weekly So it shows error. You can remove this error by two ways:
- What Stefan did is he gave the index column to pandas
DateTime
function. It uses internal functioninfer_freq
to find the frequency and return the index with frequency. - Else you can set the frequency to your index column as
df.index.asfreq(freq='m')
. Herem
represents month. You can set the frequency if you have domain knowledge or byd
.
回答3:
Make it simple:
Follow three steps: 1-if not done, make the column in yyyy-mm-dd or dd-mm-yyyy( using excel). 2-Then using pandas convert it into date format as:
df['Date'] = pd.to_datetime(df['Date'])
3-decompose it using:
from statsmodels.tsa.seasonal import seasonal_decompose decomposition=seasonal_decompose(ts_log)
And finally:----
来源:https://stackoverflow.com/questions/34457281/decomposing-trend-seasonal-and-residual-time-series-elements