Count number of non-NaN entries in every column of Dataframe

╄→尐↘猪︶ㄣ 提交于 2019-12-17 23:14:29

问题


I have a really big DataFrame and I was wondering if there was short (one or two liner) way to get the a count of non-NaN entries in a DataFrame. I don't want to do this one column at a time as I have close to 1000 columns.

df1 = pd.DataFrame([(1,2,None),(None,4,None),(5,None,7),(5,None,None)], 
                    columns=['a','b','d'], index = ['A', 'B','C','D'])

    a   b   d
A   1   2 NaN
B NaN   4 NaN
C   5 NaN   7
D   5 NaN NaN

Output:

a: 3
b: 2
d: 1

回答1:


The count() method returns the number of non-NaN values in each column:

>>> df1.count()
a    3
b    2
d    1
dtype: int64

Similarly, count(axis=1) returns the number of non-NaN values in each row.



来源:https://stackoverflow.com/questions/29971075/count-number-of-non-nan-entries-in-every-column-of-dataframe

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!