问题
is there any elegant way to make Python JSON encoder support datetime? some 3rd party module or easy hack?
I am using tornado's database wrapper to fetch some rows from db to generate a json. The query result includes a regular MySQL timestamp column.
It's quite annoying that Python's default json encoder doesn't support its own datetime type, which is so common in all kinds of database queries.
I don't want to modify Python's own json encoder. any good practice? Thanks a lot!
ps: I found a dirty hack by modifying the Python JSON encoder default method:
Change:
def default(self, o):
raise TypeError(repr(o) + " is not JSON serializable")
To:
def default(self, o):
from datetime import date
from datetime import datetime
if isinstance(o, datetime):
return o.isoformat()
elif isinstance(o, date):
return o.isoformat()
else:
raise TypeError(repr(o) + " is not JSON serializable")
well, it will be a temporary solution just for dev environment.
But for long term solution or production environment, this is quite ugly, and I have to do the modification every time I deploy to a new server.
Is there a better way? I do not want to modify Python code itself, neither Tornado source code. Is there something I can do with my own project code to make this happen? preferably in one pace.
Thanks a lot!
回答1:
The docs suggest subclassing JSONEncoder and implementing your own default method. Seems like you're basically there, and it's not a "dirty hack".
The reason dates aren't handled by the default encoder is there is no standard representation of a date in JSON. Some people are using the format /Date(1198908717056)/
, but I prefer ISO format personally.
import json
import datetime
class DateTimeEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (datetime.datetime, datetime.date, datetime.time)):
return obj.isoformat()
elif isinstance(obj, datetime.timedelta):
return (datetime.datetime.min + obj).time().isoformat()
return super(DateTimeEncoder, self).default(obj)
now = datetime.datetime.now()
encoder = DateTimeEncoder()
encoder.encode({"datetime": now, "date": now.date(), "time": now.time()})
> {"datetime": "2019-07-02T16:17:09.990126", "date": "2019-07-02", "time": "16:17:09.990126"}
回答2:
json.dumps(thing, default=str)
回答3:
I made my own classes for my project:
import datetime
import decimal
import json
import sys
class EnhancedJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime.datetime):
ARGS = ('year', 'month', 'day', 'hour', 'minute',
'second', 'microsecond')
return {'__type__': 'datetime.datetime',
'args': [getattr(obj, a) for a in ARGS]}
elif isinstance(obj, datetime.date):
ARGS = ('year', 'month', 'day')
return {'__type__': 'datetime.date',
'args': [getattr(obj, a) for a in ARGS]}
elif isinstance(obj, datetime.time):
ARGS = ('hour', 'minute', 'second', 'microsecond')
return {'__type__': 'datetime.time',
'args': [getattr(obj, a) for a in ARGS]}
elif isinstance(obj, datetime.timedelta):
ARGS = ('days', 'seconds', 'microseconds')
return {'__type__': 'datetime.timedelta',
'args': [getattr(obj, a) for a in ARGS]}
elif isinstance(obj, decimal.Decimal):
return {'__type__': 'decimal.Decimal',
'args': [str(obj),]}
else:
return super().default(obj)
class EnhancedJSONDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
super().__init__(*args, object_hook=self.object_hook,
**kwargs)
def object_hook(self, d):
if '__type__' not in d:
return d
o = sys.modules[__name__]
for e in d['__type__'].split('.'):
o = getattr(o, e)
args, kwargs = d.get('args', ()), d.get('kwargs', {})
return o(*args, **kwargs)
if __name__ == '__main__':
j1 = json.dumps({'now': datetime.datetime.now(),
'val': decimal.Decimal('9.3456789098765434987654567')},
cls=EnhancedJSONEncoder)
print(j1)
o1 = json.loads(j1, cls=EnhancedJSONDecoder)
print(o1)
Result:
{"val": {"args": ["9.3456789098765434987654567"], "__type__": "decimal.Decimal"}, "now": {"args": [2014, 4, 29, 11, 44, 57, 971600], "__type__": "datetime.datetime"}}
{'val': Decimal('9.3456789098765434987654567'), 'now': datetime.datetime(2014, 4, 29, 11, 44, 57, 971600)}
References:
- json Documentation
- Mark Hildreth -- Subclassing JSONEncoder and JSONDecoder
- Cédric Krier -- trytond.protocols.jsonrpc source code
Note: It can be made more flexible by passing a custom dictionary with types as keys and args, kwargs as values to the encoder's __init__()
and use that (or a default dictionary) in the default()
method.
回答4:
json.dumps(r, default=lambda o: o.isoformat() if hasattr(o, 'isoformat') else o)
回答5:
The Tryton project has a JSONEncoder implementation for datetime.datetime
, datetime.date
and datetime.time
objects (with others). It is used for JSON RPC communication between the server and client.
See http://hg.tryton.org/2.4/trytond/file/ade5432ac476/trytond/protocols/jsonrpc.py#l53
回答6:
Convert the datetime type into a unix timestamp, then encode the contents into a json.
e.g. : http://codepad.org/k3qF09Kr
回答7:
Create a custom decoder/encoder:
class CustomJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime.datetime):
return http_date(obj)
if isinstance(obj, uuid.UUID):
return str(obj)
return json.JSONEncoder.default(self, obj)
class CustomJSONDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
def object_hook(self, source):
for k, v in source.items():
if isinstance(v, str):
try:
source[k] = datetime.datetime.strptime(str(v), '%a, %d %b %Y %H:%M:%S %Z')
except:
pass
return source
回答8:
Just create a custom encoder
(the small but important addition to Cole's answer is the handling of pd.NaT (or null/empty timestamp values), since without the addition you will get very weird timestamp conversions for NaT/missing timestamp data)
class CustomEncoder(json.JSONEncoder):
def default(self, obj):
if pd.isnull(obj):
return None
elif isinstance(obj, datetime):
return obj.isoformat()
elif isinstance(obj, date):
return obj.isoformat()
elif isinstance(obj, timedelta):
return (datetime.min + obj).time().isoformat()
else:
return super(CustomEncoder, self).default(obj)
Then use it to encode a dataframe:
df_as_dict = df.to_dict(outtype = 'records') # transform to dict
df_as_json = CustomEncoder().encode(df_as_dict) #transform to json
Since the encoder standardized the data, the regular decoder will act fine in transforming it back to a dataframe:
result_as_dict = json.JSONDecoder().decode(df_as_json) # decode back to dict
result_df = pd.DataFrame(result) # transform dict back to dataframe
Of course this will also work if you put the dataframe into a larger dict before encoding, e.g
input_dict = {'key_1':val_1,'key_2':val_2,...,'df_as_dict':df_as_dict}
input_json = CustomEncoder().encode(input_dict)
input_json_back_as_dict = json.JSONDecoder().decode(input_json)
input_df_back_as_dict = input_json_back_as_dict['df_as_dict']
input_df_back_as_df = pd.DataFrame(input_df_back_as_dict)
来源:https://stackoverflow.com/questions/12122007/python-json-encoder-to-support-datetime