convert nan value to zero

萝らか妹 提交于 2019-12-17 08:29:49

问题


I have a 2D numpy array. Some of the values in this array are NaN. I want to perform certain operations using this array. For example consider the array:

[[   0.   43.   67.    0.   38.]
 [ 100.   86.   96.  100.   94.]
 [  76.   79.   83.   89.   56.]
 [  88.   NaN   67.   89.   81.]
 [  94.   79.   67.   89.   69.]
 [  88.   79.   58.   72.   63.]
 [  76.   79.   71.   67.   56.]
 [  71.   71.   NaN   56.  100.]]

I am trying to take each row, one at a time, sort it in reversed order to get max 3 values from the row and take their average. The code I tried is:

# nparr is a 2D numpy array
for entry in nparr:
    sortedentry = sorted(entry, reverse=True)
    highest_3_values = sortedentry[:3]
    avg_highest_3 = float(sum(highest_3_values)) / 3

This does not work for rows containing NaN. My question is, is there a quick way to convert all NaN values to zero in the 2D numpy array so that I have no problems with sorting and other things I am trying to do.


回答1:


This should work:

from numpy import *

a = array([[1, 2, 3], [0, 3, NaN]])
where_are_NaNs = isnan(a)
a[where_are_NaNs] = 0

In the above case where_are_NaNs is:

In [12]: where_are_NaNs
Out[12]: 
array([[False, False, False],
       [False, False,  True]], dtype=bool)



回答2:


Where A is your 2D array:

import numpy as np
A[np.isnan(A)] = 0

The function isnan produces a bool array indicating where the NaN values are. A boolean array can by used to index an array of the same shape. Think of it like a mask.




回答3:


How about nan_to_num()?




回答4:


A code example for drake's answer to use nan_to_num:

>>> import numpy as np
>>> A = np.array([[1, 2, 3], [0, 3, np.NaN]])
>>> A = np.nan_to_num(A)
>>> A
array([[ 1.,  2.,  3.],
       [ 0.,  3.,  0.]])



回答5:


You could use np.where to find where you have NaN:

import numpy as np

a = np.array([[   0,   43,   67,    0,   38],
              [ 100,   86,   96,  100,   94],
              [  76,   79,   83,   89,   56],
              [  88,   np.nan,   67,   89,   81],
              [  94,   79,   67,   89,   69],
              [  88,   79,   58,   72,   63],
              [  76,   79,   71,   67,   56],
              [  71,   71,   np.nan,   56,  100]])

b = np.where(np.isnan(a), 0, a)

In [20]: b
Out[20]: 
array([[   0.,   43.,   67.,    0.,   38.],
       [ 100.,   86.,   96.,  100.,   94.],
       [  76.,   79.,   83.,   89.,   56.],
       [  88.,    0.,   67.,   89.,   81.],
       [  94.,   79.,   67.,   89.,   69.],
       [  88.,   79.,   58.,   72.,   63.],
       [  76.,   79.,   71.,   67.,   56.],
       [  71.,   71.,    0.,   56.,  100.]])



回答6:


nan is never equal to nan

if z!=z:z=0

so for a 2D array

for entry in nparr:
    if entry!=entry:entry=0



回答7:


You can use numpy.nan_to_num :

numpy.nan_to_num(x) : Replace nan with zero and inf with finite numbers.

Example (see doc) :

>>> np.set_printoptions(precision=8)
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([  1.79769313e+308,  -1.79769313e+308,   0.00000000e+000,
        -1.28000000e+002,   1.28000000e+002])



回答8:


You can use lambda function, an example for 1D array:

import numpy as np
a = [np.nan, 2, 3]
map(lambda v:0 if np.isnan(v) == True else v, a)

This will give you the result:

[0, 2, 3]



回答9:


For your purposes, if all the items are stored as str and you just use sorted as you are using and then check for the first element and replace it with '0'

>>> l1 = ['88','NaN','67','89','81']
>>> n = sorted(l1,reverse=True)
['NaN', '89', '88', '81', '67']
>>> import math
>>> if math.isnan(float(n[0])):
...     n[0] = '0'
... 
>>> n
['0', '89', '88', '81', '67']


来源:https://stackoverflow.com/questions/5124376/convert-nan-value-to-zero

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!