问题
I've got a pandas DataFrame filled mostly with real numbers, but there is a few nan
values in it as well.
How can I replace the nan
s with averages of columns where they are?
This question is very similar to this one: numpy array: replace nan values with average of columns but, unfortunately, the solution given there doesn't work for a pandas DataFrame.
回答1:
You can simply use DataFrame.fillna to fill the nan
's directly:
In [27]: df
Out[27]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 NaN -2.027325 1.533582
4 NaN NaN 0.461821
5 -0.788073 NaN NaN
6 -0.916080 -0.612343 NaN
7 -0.887858 1.033826 NaN
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
In [28]: df.mean()
Out[28]:
A -0.151121
B -0.231291
C -0.530307
dtype: float64
In [29]: df.fillna(df.mean())
Out[29]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.151121 -2.027325 1.533582
4 -0.151121 -0.231291 0.461821
5 -0.788073 -0.231291 -0.530307
6 -0.916080 -0.612343 -0.530307
7 -0.887858 1.033826 -0.530307
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
The docstring of fillna
says that value
should be a scalar or a dict, however, it seems to work with a Series
as well. If you want to pass a dict, you could use df.mean().to_dict()
.
回答2:
Try:
sub2['income'].fillna((sub2['income'].mean()), inplace=True)
回答3:
In [16]: df = DataFrame(np.random.randn(10,3))
In [17]: df.iloc[3:5,0] = np.nan
In [18]: df.iloc[4:6,1] = np.nan
In [19]: df.iloc[5:8,2] = np.nan
In [20]: df
Out[20]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 NaN -0.985188 -0.324136
4 NaN NaN 0.238512
5 0.769657 NaN NaN
6 0.141951 0.326064 NaN
7 -1.694475 -0.523440 NaN
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
In [22]: df.mean()
Out[22]:
0 -0.251534
1 -0.040622
2 -0.841219
dtype: float64
Apply per-column the mean of that columns and fill
In [23]: df.apply(lambda x: x.fillna(x.mean()),axis=0)
Out[23]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 -0.251534 -0.985188 -0.324136
4 -0.251534 -0.040622 0.238512
5 0.769657 -0.040622 -0.841219
6 0.141951 0.326064 -0.841219
7 -1.694475 -0.523440 -0.841219
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
回答4:
# To read data from csv file
Dataset = pd.read_csv('Data.csv')
# To divide input in X and y axis
X = Dataset.iloc[:, :-1].values
Y = Dataset.iloc[:, 3].values
# To calculate mean use imputer class
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values='NaN', strategy='mean', axis=0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
回答5:
If you want to impute missing values with mean and you want to go column by column, then this will only impute with the mean of that column. This might be a little more readable.
sub2['income'] = sub2['income'].fillna((sub2['income'].mean()))
回答6:
Another option besides those above is:
df = df.groupby(df.columns, axis = 1).transform(lambda x: x.fillna(x.mean()))
It's less elegant than previous responses for mean, but it could be shorter if you desire to replace nulls by some other column function.
回答7:
Directly use df.fillna(df.mean())
to fill all the null value with mean
If you want to fill null value with mean of that column then you can use this
suppose x=df['Item_Weight']
here Item_Weight
is column name
here we are assigning (fill null values of x with mean of x into x)
df['Item_Weight'] = df['Item_Weight'].fillna((df['Item_Weight'].mean()))
If you want to fill null value with some string then use
here Outlet_size
is column name
df.Outlet_Size = df.Outlet_Size.fillna('Missing')
回答8:
Pandas: How to replace NaN (nan
) values with the average (mean), median or other statistics of one column
Say your DataFrame is df
and you have one column called nr_items
. This is: df['nr_items']
If you want to replace the NaN
values of your column df['nr_items']
with the mean of the column:
Use method .fillna()
:
mean_value=df['nr_items].mean()
df['nr_item_ave']=df['nr_items'].fillna(mean_value)
I have created a new df
column called nr_item_ave
to store the new column with the NaN
values replaced by the mean
value of the column.
You should be careful when using the mean
. If you have outliers is more recommendable to use the median
来源:https://stackoverflow.com/questions/18689823/pandas-dataframe-replace-nan-values-with-average-of-columns