问题
Consider the following linked list:
1->2->3->4->5->6->7->8->9->4->...->9->4.....
The above list has a loop as follows:
[4->5->6->7->8->9->4]
Drawing the linked list on a whiteboard, I tried manually solving it for different pointer steps, to see how the pointers move around -
(slow_pointer_increment, fast_pointer_increment)
So, the pointers for different cases are as follows:
(1,2), (2,3), (1,3)
The first two pairs of increments - (1,2) and (2,3) worked fine, but when I use the pair (1,3), the algorithm does not seem to work on this pair. Is there a rule as to by how much we need to increment the steps for this algorithm to hold true?
Although I searched for various increment steps for the slower and the faster pointer, I haven't so far found a single relevant answer as to why it is not working for the increment (1,3) on this list.
回答1:
The algorithm is only guaranteed to find a cycle at any position if the difference between the pointer increments and the cycle length are coprimes (i.e. their greatest common divisor must be 1).
For the general case, this means the difference between the increments must be 1 (because that's the only positive integer that's coprime to all other positive integers).
For (1,3)
, the difference is 3-1=2
, and the cycle length is 2
, 2
and 2
are not coprimes, thus the algorithm is not guaranteed to find the cycle.
The key to understanding this is that, at least for the purposes of checking whether the pointers ever meet, the slow and fast pointers' positions within the cycle only matters relative to each other. That is, these two can be considered equivalent: (the difference is 1 for both)
slow fast slow fast
↓ ↓ ↓ ↓
0→1→2→3→4→5→0 0→1→2→3→4→5→0
So we can think of this in terms of the position of slow
remaining constant and fast
moving at an increment of fastIncrement-slowIncrement
, at which point the problem becomes:
Starting at any position, can we reach a specific position moving at some speed (mod cycle length)?
Or, more generally:
Can we reach every position moving at some speed (mod cycle length)?
Which will only be true if the speed and cycle length are coprimes.
For example, look at a speed of 4 and a cycle of length 6 - starting at 0, we visit:0, 4, 8%6=2, 6%6=0, 4, 2, 0, ...
- GCD(4,6) = 2, and we can only visit every second element.
To see this in action, consider increments of (1,5) (difference = 4) for the example given above and see that the pointers will never meet.
I should note that, to my knowledge at least, the (1,2) increment is considered a fundamental part of the algorithm.
Using different increments (as per the above constraints) might work, but it would be a move away from the "official" algorithm and would involve more work (since a pointer to a linked-list must be incremented iteratively, you can't increment it by more than 1 in a single step) without any clear advantage for the general case.
来源:https://stackoverflow.com/questions/44685102/why-does-floyds-cycle-finding-algorithm-fail-for-certain-pointer-increment-spee