问题
I have a set of images and i want to create a histogram over the hue values from each image. Therfore i created an array with length 180. In every cell i add 1 if the hue value is in the image. In the end i have the array with the occurence of each hue value, but when i use numpy.hist, the y-axis are the hue values and the x-axis are the occurence. But i want it the other way round.
Here is my code:
path = 'path'
sub_path = 'subpath'
sumHueOcc = np.zeros((180, 1), dtype=int)
print("sumHue Shape")
print(sumHueOcc.shape)
for item in dirs:
fullpath = os.path.join(path,item)
pathos = os.path.join(sub_path,item)
if os.path.isfile(fullpath):
img = np.array(Image.open(fullpath))
f, e = os.path.splitext(pathos)
imgHSV = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
print("Img shape")
print(img.shape)
# want to work with hue only
h, s, v = cv2.split(imgHSV)
# the hue values in one large array
Z = h.reshape((-1, 1))
# convert to np.float32
Z = np.uint32(Z)
# add 1 for each hue value in the image
for z in Z:
sumHueOcc[z] = sumHueOcc[z] + 1
plt.figure(figsize=(9, 8))
plt.subplot(311) # Hue Picture 1
plt.subplots_adjust(hspace=.5)
plt.title("Hue Picture 1")
plt.hist(np.ndarray.flatten(h), bins=180)
plt.subplot(312) # Hue Picture 2
plt.subplots_adjust(hspace=.5)
plt.title("Hue Picture 2")
plt.hist(np.ndarray.flatten(Z), bins=180)
plt.subplot(313) # Hue Picture 2
plt.subplots_adjust(hspace=.5)
plt.title("Sum Occ")
plt.hist(np.ndarray.flatten(sumHueOcc), bins=180)
plt.show()
#First Hue Sum
plt.figure(figsize=(9,8))
plt.title("Sum Hue Occ")
plt.hist(np.ndarray.flatten(sumHueOcc), bins=180)
plt.show()
Here is Berriels Code with the change from Half Hue to Full Hue:
print(glob.glob('path with my 4 images'))
# list of paths to the images
image_fname_list = glob.glob('path with my 4 images')
# var to accumulate the histograms
total_hue_hist = np.zeros((359,))
for image_fname in image_fname_list:
# load image
img = cv2.imread(image_fname)
# convert from BGR to HSV
img = np.float32(img)
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
# get the Hue channel
#hue = img_hsv[:, :, 0]
hue, sat, val = cv2.split(img_hsv)
# show histogram
hist, bin_edges = np.histogram(hue, bins=range(360))
total_hue_hist += hist
plt.bar(list(range(359)), hist)
plt.show()
Sum Occ has to be the same as Hue Picture 1 and 2
First of 4 Pictures
Second of 4 Pictures
Third of 4 Pictures
Last of 4 Pictures
My result, which has to be correct
Berriels result
回答1:
You can do this way:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# load image
img = cv2.imread('lenna.png')
# convert from BGR to HSV
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# get the Hue channel
hue = img_hsv[:, :, 0]
# show histogram
hist, bin_edges = np.histogram(hue, bins=range(180))
plt.bar(bin_edges[:-1], hist)
plt.show()
If you don't need to histogram values, you can do this way:
import cv2
import matplotlib.pyplot as plt
# load image
img = cv2.imread('lenna.png')
# convert from BGR to HSV
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# get the Hue channel
hue = img_hsv[:, :, 0]
# show histogram
plt.hist(hue.flatten(), bins=range(180))
plt.show()
Input (lenna.png
):
Output:
If you have multiple images, you can do something like this:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# list of paths to the images
image_fname_list = ['lenna.png', 'other_image.png', ...]
# var to accumulate the histograms
total_hue_hist = np.zeros((179,))
for image_fname in image_fname_list:
# load image
img = cv2.imread(image_fname)
# convert from BGR to HSV
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# get the Hue channel
hue = img_hsv[:, :, 0]
# show histogram
hist, bin_edges = np.histogram(hue, bins=range(180))
total_hue_hist += hist
plt.bar(list(range(179)), hist)
plt.show()
回答2:
I used the other alternative and put the images in one large vector and used the numpy.hist function for that vector. Then i get the right histogram for all images.
path = 'path'
sub_path = 'subpath'
sumHueOcc2 = np.zeros((1, 1), dtype=np.uint64)
i=0
for item in dirs:
fullpath = os.path.join(path,item)
pathos = os.path.join(sub_path,item)
if os.path.isfile(fullpath):
img = np.array(Image.open(fullpath))
f, e = os.path.splitext(pathos)
#imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
imgHSV = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) #numpy RGB
# want to work with hue only
h, s, v = cv2.split(imgHSV)
# the hue values in one large array
Z = h.reshape((-1, 1))
# convert to np.float32
Z = np.uint64(Z)
# Huge vector of Images stack
sumHueOcc2 = np.vstack((sumHueOcc2, Z))
if i==0:
sumHueOcc2 = np.delete(sumHueOcc2, (0), axis=0)
i +=1
#Hue Sum for all images
plt.figure(figsize=(9,8))
plt.title("Sum Hue Occ")
plt.hist(np.ndarray.flatten(sumHueOcc2), bins=180)
plt.show()
来源:https://stackoverflow.com/questions/54291952/how-to-use-numpy-hist-when-i-want-the-occurence-of-the-indices