问题
A filter g is called separable if it can be expressed as the multiplication of two vectors grow and gcol . Employing one dimensional filters decreases the two dimensional filter's computational complexity from O(M^2 N^2) to O(2M N^2) where M and N are the width (and height) of the filter mask and the image respectively.
In this stackoverflow link, I wrote the equation of a Gabor filter in the spatial domain, then I wrote a matlab code which serves to create 64 gabor features.
According to the definition of separable filters, the Gabor filters are parallel to the image axes - theta = k*pi/2 where k=0,1,2,etc.. So if theta=pi/2 ==> the equation in this stackoverflow link can be rewritten as:
The equation above is extracted from this article.
Note: theta can be extented to be equal k*pi/4. By comparing to the equation in this stackoverflow link, we can consider that f= 1 / lambda.
By changing my previous code in this stackoverflow link, I wrote a matlab code to make the Gabor filters separable by using the equation above, but I am sure that my code below is not correct especially when I initialized the gbp and glp equations. That is why I need your help. I will appreciate your help very much.
Let's show now my code:
function [fSiz,filters1,filters2,c1OL,numSimpleFilters] = init_gabor(rot, RF_siz)
image=imread('xxx.jpg');
image_gray=rgb2gray(image);
image_gray=imresize(image_gray, [100 100]);
image_double=double(image_gray);
rot = [0 45 90 135]; % we have four orientations
RF_siz = [7:2:37]; %we get 16 scales (7x7 to 37x37 in steps of two pixels)
minFS = 7; % the minimum receptive field
maxFS = 37; % the maximum receptive field
sigma = 0.0036*RF_siz.^2 + 0.35*RF_siz + 0.18; %define the equation of effective width
lambda = sigma/0.8; % it the equation of wavelength (lambda)
G = 0.3; % spatial aspect ratio: 0.23 < gamma < 0.92
numFilterSizes = length(RF_siz); % we get 16
numSimpleFilters = length(rot); % we get 4
numFilters = numFilterSizes*numSimpleFilters; % we get 16x4 = 64 filters
fSiz = zeros(numFilters,1); % It is a vector of size numFilters where each cell contains the size of the filter (7,7,7,7,9,9,9,9,11,11,11,11,......,37,37,37,37)
filters1 = zeros(max(RF_siz),numFilters);
filters2 = zeros(numFilters,max(RF_siz));
for k = 1:numFilterSizes
for r = 1:numSimpleFilters
theta = rot(r)*pi/180;
filtSize = RF_siz(k);
center = ceil(filtSize/2);
filtSizeL = center-1;
filtSizeR = filtSize-filtSizeL-1;
sigmaq = sigma(k)^2;
for x = -filtSizeL:filtSizeR
fx = exp(-(x^2)/(2*sigmaq))*cos(2*pi*x/lambda(k));
f1(x+center,1) = fx;
end
for y = -filtSizeL:filtSizeR
gy = exp(-(y^2)/(2*sigmaq));
f2(1,y+center) = gy;
end
f1 = f1 - mean(mean(f1));
f1 = f1 ./ sqrt(sum(sum(f1.^2)));
f2 = f2 - mean(mean(f2));
f2 = f2 ./ sqrt(sum(sum(f2.^2)));
p = numSimpleFilters*(k-1) + r;
filters1(1:filtSize,p)=f1;
filters2(p,1:filtSize)=f2;
convv1=imfilter(image_double, filters1(1:filtSize,p),'conv');
convv2=imfilter(double(convv1), filters2(p,1:filtSize),'conv');
figure
imagesc(convv2);
colormap(gray);
end
end
回答1:
I think the code is correct provided your previous version of Gabor filter code is correct too. The only thing is that if theta = k * pi/4;, your formula here should be separated to:
fx = exp(-(x^2)/(2*sigmaq))*cos(2*pi*x/lambda(k));
gy = exp(-(G^2 * y^2)/(2*sigmaq));
To be consistent, you may use
f1(1,x+center) = fx;
f2(y+center,1) = gy;
or keep f1 and f2 as it is but transpose your filters1 and filters2 thereafter.
Everything else looks good to me.
EDIT
My answer above works for theta = k * pi/4;, with other angles, based on your paper,
x = i*cos(theta) - j*sin(theta);
y = i*sin(theta) + j*cos(theta);
fx = exp(-(x^2)/(2*sigmaq))*exp(sqrt(-1)*x*cos(theta));
gy = exp(-(G^2 * y^2)/(2*sigmaq))*exp(sqrt(-1)*y*sin(theta));
回答2:
The final code will be:
function [fSiz,filters1,filters2,c1OL,numSimpleFilters] = init_gabor(rot, RF_siz)
image=imread('xxx.jpg');
image_gray=rgb2gray(image);
image_gray=imresize(image_gray, [100 100]);
image_double=double(image_gray);
rot = [0 45 90 135];
RF_siz = [7:2:37];
minFS = 7;
maxFS = 37;
sigma = 0.0036*RF_siz.^2 + 0.35*RF_siz + 0.18;
lambda = sigma/0.8;
G = 0.3;
numFilterSizes = length(RF_siz);
numSimpleFilters = length(rot);
numFilters = numFilterSizes*numSimpleFilters;
fSiz = zeros(numFilters,1);
filters1 = zeros(max(RF_siz),numFilters);
filters2 = zeros(numFilters,max(RF_siz));
for k = 1:numFilterSizes
for r = 1:numSimpleFilters
theta = rot(r)*pi/180;
filtSize = RF_siz(k);
center = ceil(filtSize/2);
filtSizeL = center-1;
filtSizeR = filtSize-filtSizeL-1;
sigmaq = sigma(k)^2;
for x = -filtSizeL:filtSizeR
fx = exp(-(x^2)/(2*sigmaq))*exp(sqrt(-1)*x*cos(theta));
f1(1, x+center) = fx;
end
for y = -filtSizeL:filtSizeR
gy=exp(-(y^2)/(2*sigmaq))*exp(sqrt(-1)*y*sin(theta));
f2(y+center,1) = gy;
end
f1 = f1 - mean(mean(f1));
f1 = f1 ./ sqrt(sum(sum(f1.^2)));
f2 = f2 - mean(mean(f2));
f2 = f2 ./ sqrt(sum(sum(f2.^2)));
p = numSimpleFilters*(k-1) + r;
filters1(1:filtSize,p)=f1;
filters2(p,1:filtSize)=f2;
convv1=imfilter(image_double, filters1(1:filtSize,p),'conv');
convv2=imfilter(double(convv1), filters2(p,1:filtSize),'conv');
figure
imagesc(imag(convv2));
colormap(gray);
end
end
来源:https://stackoverflow.com/questions/21210307/working-on-separable-gabor-filters-in-matlab