Merge DataFrames and discard duplicates values

怎甘沉沦 提交于 2019-12-12 04:16:27

问题


I'm collecting time-indexed data coming from various files, but sometimes there is some overlapping:

df1 = pd.DataFrame([1, -1, -3], columns=['A'], index=pd.date_range('2000-01-01', periods=3))
df2 = pd.DataFrame([-3, 10, 1], columns=['A'], index=pd.date_range('2000-01-03', periods=3))
pd.concat([df1, df2])

            A
2000-01-01  1
2000-01-02 -1
2000-01-03 -3

             A
2000-01-03  -3
2000-01-04  10
2000-01-05   1

             A
2000-01-01   1
2000-01-02  -1
2000-01-03  -3
2000-01-03  -3
2000-01-04  10
2000-01-05   1

1) How to clean and remove the duplicate lines ? (here 2000-01-03)

2) More generally, is there a faster / more clever way with pandas to read and merge multiple csv files than doing manually:

L=[]
for f in glob.glob('*.csv'):
    L.append(pd.read_csv(f, ...))
fulldata = pd.concat(L)                   # this can be time consuming
fulldata.remove_duplicate_lines()         # this can be time consuming too

回答1:


IIUC you could do pd.concat and then do drop_duplicates:

In [104]: pd.concat([df1, df2]).drop_duplicates()
Out[104]: 
             A
2000-01-01   1
2000-01-02  -1
2000-01-03  -3
2000-01-04  10
2000-01-05   7

EDIT

You are right, that method isn't working properly because it drops by value not by index. For index you could duplicated for index:

df = pd.concat([df1, df2])
df[~df.index.duplicated()]

In [107]: df[~df.index.duplicated()]
Out[107]: 
             A
2000-01-01   1
2000-01-02  -1
2000-01-03  -3
2000-01-04  10
2000-01-05   1

Or you could use 1st method with modification, first you need to do reset_index, and then use drop_duplicates but for index values with subset key:

 pd.concat([df1, df2]).reset_index().drop_duplicates(subset='index').set_index('index')

In [118]: pd.concat([df1, df2]).reset_index().drop_duplicates(subset='index').set_index('index')
Out[118]: 
             A
index         
2000-01-01   1
2000-01-02  -1
2000-01-03  -3
2000-01-04  10
2000-01-05   1



回答2:


If you're feeling adventurous and decide to use something other than Pandas to combine CSVs, and you're on a machine with Awk, you can combine various files and remove duplicates with this single command:

awk '!arr[$0]++' /path/to/your/files/* > combined_no_dups.csv

And then you could load it into pandas...

df = pd.read_csv("combined_no_dups.csv")


来源:https://stackoverflow.com/questions/34197777/merge-dataframes-and-discard-duplicates-values

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!