问题
I have a dataset generated in this way:
aa = linspace(A - 5, A + 5, n_points)
bb = linspace(B - 1.5, B + 1.5, n_points)
z = []
for a in aa:
for b in bb:
z.append(cost([a, b]))
I would like and head map where z define the color in the point (a,b) . I need this to analyze local minimum.
I am using matplotlib but I do not know exactly how to proceed.
回答1:
Typically you'd use imshow
or pcolormesh
for this.
For example:
import numpy as np
import matplotlib.pyplot as plt
n_points = 10
aa = np.linspace(-5, 5, n_points)
bb = np.linspace(-1.5, 1.5, n_points)
def cost(a, b):
return a + b
z = []
for a in aa:
for b in bb:
z.append(cost(a, b))
z = np.reshape(z, [len(aa), len(bb)])
fig, ax = plt.subplots()
im = ax.pcolormesh(aa, bb, z)
fig.colorbar(im)
ax.axis('tight')
plt.show()

However, it would be better to write your example code as:
import numpy as np
import matplotlib.pyplot as plt
n_points = 10
a = np.linspace(-5, 5, n_points)
b = np.linspace(-1.5, 1.5, n_points)
a, b = np.meshgrid(b, a)
z = a + b # Vectorize your cost function
fig, ax = plt.subplots()
im = ax.pcolormesh(a, b, z)
fig.colorbar(im)
ax.axis('tight')
plt.show()
Or, even more compactly:
import numpy as np
import matplotlib.pyplot as plt
npoints = 10
b, a = np.mgrid[-5:5:npoints*1j, -1.5:1.5:npoints*1j]
z = a + b
fig, ax = plt.subplots()
im = ax.pcolormesh(a, b, z)
fig.colorbar(im)
ax.axis('tight')
plt.show()
回答2:
I just did something similar, and I used a Scatter plot.
plt.scatter(x_vals, y_vals, s = 100, c = z_vals, cmap = 'rainbow')
c = plt.colorbar()
来源:https://stackoverflow.com/questions/22712219/heat-map-using-matplotlib