Numba custom stack class and pop function failing in `nopython` mode

拜拜、爱过 提交于 2019-12-11 06:54:25

问题


Trying to solve the issue posted in the other question I posted: Numba jitclass not working with python List , I tried to implement the list of nodes to visit with a custom stack class.

The code below is quite similar to that from the other question, but instead of using python lists inside the get_all, the nodes to visit are controled with the Stack class.

import numba as nb
import numpy as np
INF = np.iinfo(np.int64).max


node_type = nb.deferred_type()
stack_type = nb.deferred_type()

node_spec = [
    ('bbox', nb.int64[:]),
    ('data', nb.optional(nb.int32)),
    ('leaf', nb.optional(nb.boolean)),
    ('height', nb.optional(nb.int16)),
    ('children', nb.optional(stack_type))
]
@nb.jitclass(node_spec)
class Node(object):
    def __init__(self, bbox, data, leaf, height, children):
        self.bbox = bbox
        self.data = data
        self.leaf = leaf
        self.height = height
        self.children = children

node_type.define(Node.class_type.instance_type)


stack_spec = [
        ('node', node_type),
        ('next', nb.optional(stack_type)),
        ('valid', nb.boolean)
]
@nb.jitclass(stack_spec)
class Stack(object):
    def __init__(self, node, next):
        self.node = node
        self.next = next
        self.valid = True

stack_type.define(Stack.class_type.instance_type)

@nb.jit
def push(node, stack=None):
    return Stack(node, stack)

@nb.jit
def pop(stack):
    if stack.valid == False:
        return None
    while stack.next is not None and stack.next.valid == True:
        stack = stack.next
    stack.valid = False
    return stack.node

@nb.jit
def get(stack, i):
    ind = 0
    while stack is not None:
        if ind == i:
            return stack
        stack = stack.next
        ind+=1
    return stack

@nb.jit
def length(stack):
    cnt = 0
    while stack is not None and stack.valid == True:
        cnt+=1
        stack = stack.next
    return cnt


def create_node(bbox, data=None, leaf=None, height=None, children=None):
    node = Node(bbox, data, leaf, height, children)
    return node


def create_root(children=None, height=1, leaf=True):
    bbox = np.array([INF, INF, -INF, -INF], dtype=int)
    return create_node(bbox, leaf=leaf, height=height, children=children)


def create_tree():
    data = np.asarray([[1,2,1,2],
                       [2,3,2,3],
                       [3,5,3,5],
                       [5,7,6,8],
                       [5,6,5,6],
                       [6,8,6,8]], dtype=int)

    bbox1 = np.array([1,3,1,3], dtype=int)
    node1 = create_node(bbox1, leaf=True)
    item0 = create_node(data[0], data=0)
    node1.children = push(item0, node1.children)
    item1 = create_node(data[1], data=1)
    node1.children = push(item1, node1.children)

    bbox2 = np.array([3,5,3,5], dtype=int)
    node2 = create_node(bbox2, leaf=True)
    item2 = create_node(data[2], data=2)
    node2.children = push(item2, node2.children)

    bbox3 = np.array([5,9,5,9], dtype=int)
    node3 = create_node(bbox3, leaf=True)
    item3 = create_node(data[3], data=3)
    node3.children = push(item3, node3.children)
    item4 = create_node(data[4], data=4)
    node3.children = push(item4, node3.children)
    item5 = create_node(data[5], data=5)
    node3.children = push(item5, node3.children)

    root = create_root(leaf=False)
    root.children = push(node1, root.children)
    root.children = push(node2, root.children)
    root.children = push(node3, root.children)

    return root


@nb.njit
def get_all(root_node):

    nodes_to_search = Stack(root_node, None)
    # nodes_to_search = [root_node]

    items = [nb.int32(-99)]
    # items = []

    while length(nodes_to_search) > 0:
    # while len(nodes_to_search) > 0:

        print(length(nodes_to_search))
        # print(len(nodes_to_search))

        node = pop(nodes_to_search)
        # node = nodes_to_search.pop()

        if not node.leaf:
            for i in range(length(node.children)):
                child = get(node.children, i)

                nodes_to_search = push(child.node, nodes_to_search)
                # nodes_to_search.append(child.node)

        else:
            for i in range(length(node.children)):
                item = get(node.children, i)
                items.append(item.node.data)
    return items


def runme():
    root = create_tree()
    data = get_all(root)
    print(data)

if __name__ == '__main__':
    runme()

If I run this code, with the njit decorator, the following error comes out:

numba.errors.TypingError: Failed at nopython (nopython frontend) Invalid usage of type(CPUDispatcher()) with parameters (instance.jitclass.Stack#7ff9bc11f988) * parameterized File "rbush/minimal_numba_stack.py", line 136 [1] During: resolving callee type: type(CPUDispatcher())

I feel like I should tell numba something about my pop function, perhaps some parameter in pop's decorator? Or change the way I'm declaring my node? But I can't see what numba is in need. My question is: What am I missing that is blocking the pop function to run properly?

Thanks

来源:https://stackoverflow.com/questions/48159360/numba-custom-stack-class-and-pop-function-failing-in-nopython-mode

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!