问题
Problem
I have data on two measures for four individuals each in a wide format. The measures are x
and y
and the individuals are A, B, C, D
. The data frame looks like this
d <- data.frame(matrix(sample(1:100, 40, replace = F), ncol = 8))
colnames(d) <- paste(rep(c("x.", "y."),each = 4), rep(LETTERS[1:4], 2), sep ="")
d
x.A x.B x.C x.D y.A y.B y.C y.D
1 56 65 42 96 100 76 39 26
2 19 93 94 75 63 78 5 44
3 22 57 15 62 2 29 89 79
4 49 13 95 97 85 81 60 37
5 45 38 24 91 23 82 83 72
Now, would I would like to obtain for each row is the value of y
for the individual with the lowest value of x
.
So in the example above, the lowest value of x
in row 1
is for individual C
. Hence, for row 1
I would like to obtain y.C
which is 39
.
In the example, the resulting vector should be 39, 63, 89, 81, 83
.
Approach
I have tried to get to this by first generating a matrix of the subset of d
for the values of x
.
t(apply(d[,1:4], 1, function(x) min(x) == x))
x.A x.B x.C x.D
[1,] FALSE FALSE TRUE FALSE
[2,] TRUE FALSE FALSE FALSE
[3,] FALSE FALSE TRUE FALSE
[4,] FALSE TRUE FALSE FALSE
[5,] FALSE FALSE TRUE FALSE
Now I wanted to apply this matrix to subset the subset of the data frame for the values of y
. But I cannot find a way to achieve this.
Any help is much appreciated. Suggestions for a totally different - more elegant - approach are highly welcome too.
Thanks a lot!
回答1:
We subset the dataset with the columns starting with 'x' ('dx') and 'y' ('dy'). Get the column index of the minimum value in each row of 'dx' using max.col
, cbind
with the row index and get the corresponding elements in 'dy'.
dx <- d[grep('^x', names(d))]
dy <- d[grep('^y', names(d))]
dy[cbind(1:nrow(dx),max.col(-dx, 'first'))]
#[1] 39 63 89 81 83
The above can be easily be converted to a function
get_min <- function(dat){
dx <- dat[grep('^x', names(dat))]
dy <- dat[grep('^y', names(dat))]
dy[cbind(1:nrow(dx), max.col(-dx, 'first'))]
}
get_min(d)
#[1] 39 63 89 81 83
Or using the OP's apply
based method
t(d[,5:8])[apply(d[,1:4], 1, function(x) min(x) == x)]
#[1] 39 63 89 81 83
data
d <- structure(list(x.A = c(56L, 19L, 22L, 49L, 45L),
x.B = c(65L,
93L, 57L, 13L, 38L), x.C = c(42L, 94L, 15L, 95L, 24L),
x.D = c(96L,
75L, 62L, 97L, 91L), y.A = c(100L, 63L, 2L, 85L, 23L),
y.B = c(76L,
78L, 29L, 81L, 82L), y.C = c(39L, 5L, 89L, 60L, 83L),
y.D = c(26L,
44L, 79L, 37L, 72L)), .Names = c("x.A", "x.B", "x.C",
"x.D",
"y.A", "y.B", "y.C", "y.D"), class = "data.frame",
row.names = c("1", "2", "3", "4", "5"))
回答2:
Here is my solution. The core idea is that there are functions which.min, which.max
that can be row applied to the data frame:
Edit:
Now, would I would like to obtain for each row is the value of y for the individual with the lowest value of x.
ind <- apply(d[ ,1:4], 1, which.min) # build column index by row
res <- d[,5:8][cbind(1:nrow(d), ind)] # rows are in order, select values by matrix
names(res) <- colnames(d)[5:8][ind] # set colnames as names from the sample column
res
y.D y.B y.D y.A y.D
18 46 16 85 80
Caveat: only works if individuals are in the same order for treatment x. and y. and all individuals present. Otherwise you can use grep like in Akrun's solution.
# My d was:
x.A x.B x.C x.D y.A y.B y.C y.D
1 88 96 65 55 14 99 63 18
2 12 11 27 45 70 46 20 69
3 32 81 21 9 77 44 91 16
4 8 84 42 78 85 94 28 90
5 31 51 83 2 67 25 54 80
回答3:
We can create a function as follows,
get_min <- function(x){
d1 <- x[,1:4]
d2 <- x[,5:8]
mtrx <- as.matrix(d2[,apply(d1, 1, which.min)])
a <- row(mtrx) - col(mtrx)
split(mtrx, a)$"0"
}
get_min(d)
#[1] 39 63 89 81 83
来源:https://stackoverflow.com/questions/35887997/subset-data-frame-with-matrix-of-logical-values