问题
Given an example dataframe with the 2nd and 3rd columns of free text, e.g.
>>> import pandas as pd
>>> lol = [[1,2,'abc','foo\nbar'], [3,1, 'def\nhaha', 'love it\n']]
>>> pd.DataFrame(lol)
0 1 2 3
0 1 2 abc foo\nbar
1 3 1 def\nhaha love it\n
The goal is to replace the \n
to (whitespace) and strip the string in column 2 and 3 to achieve:
>>> pd.DataFrame(lol)
0 1 2 3
0 1 2 abc foo bar
1 3 1 def haha love it
How to replace newlines with spaces for specific columns through pandas dataframe?
I have tried this:
>>> import pandas as pd
>>> lol = [[1,2,'abc','foo\nbar'], [3,1, 'def\nhaha', 'love it\n']]
>>> replace_and_strip = lambda x: x.replace('\n', ' ').strip()
>>> lol2 = [[replace_and_strip(col) if type(col) == str else col for col in list(row)] for idx, row in pd.DataFrame(lol).iterrows()]
>>> pd.DataFrame(lol2)
0 1 2 3
0 1 2 abc foo bar
1 3 1 def haha love it
But there must be a better/simpler way.
回答1:
Use replace - first first and last strip and then replace \n
:
df = df.replace({r'\s+$': '', r'^\s+': ''}, regex=True).replace(r'\n', ' ', regex=True)
print (df)
0 1 2 3
0 1 2 abc foo bar
1 3 1 def haha love it
回答2:
You may use the following two regex replace approach:
>>> df.replace({ r'\A\s+|\s+\Z': '', '\n' : ' '}, regex=True, inplace=True)
>>> df
0 1 2 3
0 1 2 abc foo bar
1 3 1 def haha love it
>>>
Details
'\A\s+|\s+\Z'
->''
will act likestrip()
removing all leading and trailing whitespace:\A\s+
- matches 1 or more whitespace symbols at the start of the string|
- or\s+\Z
- matches 1 or more whitespace symbols at the end of the string
'\n'
->' '
will replace any newline with a space.
回答3:
You can select_dtypes
to select columns of type object
and use applymap
on those columns.
Because there is no inplace
argument for these functions, this would be a workaround to make change to the dataframe:
strs = lol.select_dtypes(include=['object']).applymap(lambda x: x.replace('\n', ' ').strip())
lol[strs.columns] = strs
lol
# 0 1 2 3
#0 1 2 abc foo bar
#1 3 1 def haha love it
回答4:
Adding to the other nice answers, this is a vectorized version of your initial idea:
columns = [2,3]
df.iloc[:, columns] = [df.iloc[:,col].str.strip().str.replace('\n',' ')
for col in columns]
Details:
In [49]: df.iloc[:, columns] = [df.iloc[:,col].str.strip().str.replace('\n',' ')
for col in columns]
In [50]: df
Out[50]:
0 1 2 3
0 1 2 abc def haha
1 3 1 foo bar love it
来源:https://stackoverflow.com/questions/46522652/replacing-newlines-with-spaces-for-str-columns-through-pandas-dataframe