问题
I am completely new to coq programming and unable to prove below theorem. I need help on steps how to solve below construct?
Theorem PeirceContra: forall (p q:Prop), ~p->~((p ->q) ->p).
I tried the proof below way.
Given axiom as Axiom classic : forall P:Prop, P \/ ~ P.
Theorem PeirceContra: forall (p q:Prop), ~ p -> ~((p -> q) -> p).
Proof.
unfold not.
intros.
apply H.
destruct (classic p) as [ p_true | p_not_true].
- apply p_true.
- elimtype False. apply H.
Qed.
Getting subgoal after using elimtype and apply H as
1 subgoal
p, q : Prop
H : p -> False
H0 : (p -> q) -> p
p_not_true : ~ p
______________________________________(1/1)
p
But now I am stuck here because I am unable to prove P using p_not_true construct of given axiom......Please suggest some help...... I am not clear how to use the given axiom to prove logic................
回答1:
This lemma can be proved constructively. If you think about what can be done at each step to make progress the lemma proves itself:
Lemma PeirceContra :
forall P Q, ~P -> ~((P -> Q) -> P).
Proof.
intros P Q np.
unfold "~".
intros pq_p.
apply np. (* this is pretty much the only thing we can do at this point *)
apply pq_p. (* this is almost inevitable too *)
(* the rest should be easy *)
(* Qed. *)
来源:https://stackoverflow.com/questions/55677841/how-to-prove-forall-p-qprop-p-p-q-p-using-coq