Change in preference value does not affect the results of Affinity propagation Clustering

孤者浪人 提交于 2019-12-08 05:11:33

问题


Refer to the following code

import numpy as np
from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs

##############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5)

# Compute similarities
X_norms = np.sum(X ** 2, axis=1)
S = - X_norms[:, np.newaxis] - X_norms[np.newaxis, :] + 2 * np.dot(X, X.T)
p=[10 * np.median(S),np.mean(S,axis=1),np.mean(S,axis=0),100000,-100000]
##############################################################################

# Compute Affinity Propagation
for preference in p:
    af = AffinityPropagation().fit(S, preference)
    cluster_centers_indices = af.cluster_centers_indices_
    labels = af.labels_

    n_clusters_ = len(cluster_centers_indices)

    print('Estimated number of clusters: %d' % n_clusters_)
    print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
    print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
    print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
    print("Adjusted Rand Index: %0.3f" % \
          metrics.adjusted_rand_score(labels_true, labels))
    print("Adjusted Mutual Information: %0.3f" % \
          metrics.adjusted_mutual_info_score(labels_true, labels))
    D = (S / np.min(S))
    print("Silhouette Coefficient: %0.3f" %
          metrics.silhouette_score(D, labels, metric='precomputed'))

    ##############################################################################

    # Plot result
    import pylab as pl
    from itertools import cycle

    pl.close('all')
    pl.figure(1)
    pl.clf()

    colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
    for k, col in zip(range(n_clusters_), colors):
        class_members = labels == k
        cluster_center = X[cluster_centers_indices[k]]
        pl.plot(X[class_members, 0], X[class_members, 1], col + '.')
        pl.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
                markeredgecolor='k', markersize=14)
        for x in X[class_members]:
            pl.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)

    pl.title('Estimated number of clusters: %d' % n_clusters_)
    pl.show()

Although I am changing the preference value in the loop but still I am getting the same clusters? So why change in preference value is not affecting clustering results?

Update

When I tried the following code the outcome is below

When I tried the suggestion as recommended by Agost in the constructor then I got following output


回答1:


The preference is a parameter of the AffinityPropagation constructor not of the fit() method. You should change line 19 to:

af = AffinityPropagation(preference=preference).fit(S)



回答2:


The sklearn implementation of AP appears to be quite fragile.

My suggestions for using it:

  • use verbose=True to see when it failed to converge
  • increase the maximum number of iterations to at least 1000
  • reduce the damping by choosing 0.9 instead of 0.5

The reason is that with default parameters, sklearn's AP usually does not converge...

As mentioned by @AgostBiro before, preference is not a parameter of the fit function (but the constructor), so your original code ignored the preference, because fit(X,y) ignores y (it's a stupid API to have the dead y parameter, but sklearn likes that this looks like the classification API)



来源:https://stackoverflow.com/questions/56087793/change-in-preference-value-does-not-affect-the-results-of-affinity-propagation-c

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!