Time series prediction using support vector regression

时光怂恿深爱的人放手 提交于 2019-12-05 11:07:34

You are not really doing time-series prediction. You are trying to predict each element of Y from a single element of X, which means that you are just solving a standard kernelized regression problem.

Another problem is when computing the RBF kernel over a range of vectors [[0],[1],[2],...], you will get a band of positive values along the diagonal of the kernel matrix while values far from the diagonal will be close to zero. The test set portion of your kernel matrix is far from the diagonal and will therefore be very close to zero, which would cause all of the SVR predictions to be close to the bias term.

For time series prediction I suggest building the training test set as

 x[0]=Y[0:K]; y[0]=Y[K]
 x[1]=Y[1:K+1]; y[1]=Y[K+1]
 ...

that is, try to predict future elements of the sequence from a window of previous elements.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!