问题
I'm using a support vector machine for my document classification task! it classifies all my Articles in the training-set, but fails to classify the ones in my test-set! trainDTM is the document term matrix of my training-set. testDTM is the one for the test-set. here's my (not so beautiful) code:
# create data.frame with labelled sentences
labeled <- as.data.frame(read.xlsx("C:\\Users\\LABELED.xlsx", 1, header=T))
# create training set and test set
traindata <- as.data.frame(labeled[1:700,c("ARTICLE","CLASS")])
testdata <- as.data.frame(labeled[701:1000, c("ARTICLE","CLASS")])
# Vector, Source Transformation
trainvector <- as.vector(traindata$"ARTICLE")
testvector <- as.vector(testdata$"ARTICLE")
trainsource <- VectorSource(trainvector)
testsource <- VectorSource(testvector)
# CREATE CORPUS FOR DATA
traincorpus <- Corpus(trainsource)
testcorpus <- Corpus(testsource)
# my own stopwords
sw <- c("i", "me", "my")
## CLEAN TEXT
# FUNCTION FOR CLEANING
cleanCorpus <- function(corpus){
corpus.tmp <- tm_map(corpus, removePunctuation)
corpus.tmp <- tm_map(corpus.tmp,stripWhitespace)
corpus.tmp <- tm_map(corpus.tmp,tolower)
corpus.tmp <- tm_map(corpus.tmp, removeWords, sw)
corpus.tmp <- tm_map(corpus.tmp, removeNumbers)
corpus.tmp <- tm_map(corpus.tmp, stemDocument, language="en")
return(corpus.tmp)}
# CLEAN CORP WITH ABOVE FUNCTION
traincorpus.cln <- cleanCorpus(traincorpus)
testcorpus.cln <- cleanCorpus(testcorpus)
## CREATE N-GRAM DOCUMENT TERM MATRIX
# CREATE N-GRAM TOKENIZER
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 1, max = 1))
# CREATE DTM
trainmatrix.cln.bi <- DocumentTermMatrix(traincorpus.cln, control = list(tokenize = BigramTokenizer))
testmatrix.cln.bi <- DocumentTermMatrix(testcorpus.cln, control = list(tokenize = BigramTokenizer))
# REMOVE SPARSE TERMS
trainDTM <- removeSparseTerms(trainmatrix.cln.bi, 0.98)
testDTM <- removeSparseTerms(testmatrix.cln.bi, 0.98)
# train the model
SVM <- svm(as.matrix(trainDTM), as.factor(traindata$CLASS))
# get classifications for training-set
results.train <- predict(SVM, as.matrix(trainDTM)) # works fine!
# get classifications for test-set
results <- predict(SVM,as.matrix(testDTM))
Error in scale.default(newdata[, object$scaled, drop = FALSE], center = object$x.scale$"scaled:center", :
length of 'center' must equal the number of columns of 'x'
i don't understand this error. and what is 'center' ?
thank you!!
回答1:
Train and test data must be in the same features space ; building two separates DTM in that way can't work.
A solution with using RTextTools :
DocTermMatrix <- create_matrix(labeled, language="english", removeNumbers=TRUE, stemWords=TRUE, ...)
container <- create_container(DocTermMatrix, labels, trainSize=1:700, testSize=701:1000, virgin=FALSE)
models <- train_models(container, "SVM")
results <- classify_models(container, models)
Or, to answer your question (with e1071), you can specify the vocabulary ('features') in the projection (DocumentTermMatrix) :
DocTermMatrixTrain <- DocumentTermMatrix(Corpus(VectorSource(trainDoc)));
Features <- DocTermMatrixTrain$dimnames$Terms;
DocTermMatrixTest <- DocumentTermMatrix(Corpus(VectorSource(testDoc)),control=list(dictionary=Features));
来源:https://stackoverflow.com/questions/22149280/support-vector-machine-works-on-training-set-but-not-on-test-set-in-r-using-e10