calculate coefficient of determination (R2) and root mean square error (RMSE) for non linear curve fitting in python

二次信任 提交于 2019-12-05 02:38:30

问题


How to calculate coefficient of determination (R2) and root mean square error (RMSE) for non linear curve fitting in python. Following code does until curve fitting. Then how to calculate R2 and RMSE?

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

def func(x, a, b, c):
    return a * np.exp(-b * x) + c

x = np.linspace(0,4,50)
y = func(x, 2.5, 1.3, 0.5)
yn = y + 0.2*np.random.normal(size=len(x))

popt, pcov = curve_fit(func, x, yn)

plt.figure()
plt.plot(x, yn, 'ko', label="Original Noised Data")
plt.plot(x, func(x, *popt), 'r-', label="Fitted Curve")
plt.legend()
plt.show()

回答1:


You could do it like this:

print "Mean Squared Error: ", np.mean((y-func(x, *popt))**2)

ss_res = np.dot((yn - func(x, *popt)),(yn - func(x, *popt)))
ymean = np.mean(yn)
ss_tot = np.dot((yn-ymean),(yn-ymean))
print "Mean R :",  1-ss_res/ss_tot

This is taking the definitions directly, as for example in the wikipedia: http://en.wikipedia.org/wiki/Coefficient_of_determination#Definitions




回答2:


Martin Böschen, not y but yn here:

np.mean((y-func(x, *popt))**2)

And read this about root-mean-square error (RMSE): http://en.wikipedia.org/wiki/Regression_analysis

residuals = yn - func(x,*popt)
print "RMSE",(scipy.sum(residuals**2)/(residuals.size-2))**0.5

Now it calculates as Excel 2003 Analysis ToolPak.



来源:https://stackoverflow.com/questions/20115272/calculate-coefficient-of-determination-r2-and-root-mean-square-error-rmse-fo

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!