How do I get a SQL row_number equivalent for a Spark RDD?

a 夏天 提交于 2019-11-26 20:26:28

The row_number() over (partition by ... order by ...) functionality was added to Spark 1.4. This answer uses PySpark/DataFrames.

Create a test DataFrame:

from pyspark.sql import Row, functions as F

testDF = sc.parallelize(
    (Row(k="key1", v=(1,2,3)),
     Row(k="key1", v=(1,4,7)),
     Row(k="key1", v=(2,2,3)),
     Row(k="key2", v=(5,5,5)),
     Row(k="key2", v=(5,5,9)),
     Row(k="key2", v=(7,5,5))
    )
).toDF()

Add the partitioned row number:

from pyspark.sql.window import Window

(testDF
 .select("k", "v",
         F.rowNumber()
         .over(Window
               .partitionBy("k")
               .orderBy("k")
              )
         .alias("rowNum")
        )
 .show()
)

+----+-------+------+
|   k|      v|rowNum|
+----+-------+------+
|key1|[1,2,3]|     1|
|key1|[1,4,7]|     2|
|key1|[2,2,3]|     3|
|key2|[5,5,5]|     1|
|key2|[5,5,9]|     2|
|key2|[7,5,5]|     3|
+----+-------+------+

This is an interesting problem you're bringing up. I will answer it in Python but I'm sure you will be able to translate seamlessly to Scala.

Here is how I would tackle it:

1- Simplify your data:

temp2 = temp1.map(lambda x: (x[0],(x[1],x[2],x[3])))

temp2 is now a "real" key-value pair. It looks like that:

[
((3, 4), (5, 5, 5)),  
((3, 4), (5, 5, 9)),   
((3, 4), (7, 5, 5)),   
((1, 2), (1, 2, 3)),  
((1, 2), (1, 4, 7)),   
((1, 2), (2, 2, 3))

]

2- Then, use the group-by function to reproduce the effect of the PARTITION BY:

temp3 = temp2.groupByKey()

temp3 is now a RDD with 2 rows:

[((1, 2), <pyspark.resultiterable.ResultIterable object at 0x15e08d0>),  
 ((3, 4), <pyspark.resultiterable.ResultIterable object at 0x15e0290>)]

3- Now, you need to apply a rank function for each value of the RDD. In python, I would use the simple sorted function (the enumerate will create your row_number column):

 temp4 = temp3.flatMap(lambda x: tuple([(x[0],(i[1],i[0])) for i in enumerate(sorted(x[1]))])).take(10)

Note that to implement your particular order, you would need to feed the right "key" argument (in python, I would just create a lambda function like those:

lambda tuple : (tuple[0],-tuple[1],tuple[2])

At the end (without the key argument function, it looks like that):

[
((1, 2), ((1, 2, 3), 0)), 
((1, 2), ((1, 4, 7), 1)), 
((1, 2), ((2, 2, 3), 2)), 
((3, 4), ((5, 5, 5), 0)), 
((3, 4), ((5, 5, 9), 1)), 
((3, 4), ((7, 5, 5), 2))

]

Hope that helps!

Good luck.

val test = Seq(("key1", (1,2,3)),("key1",(4,5,6)), ("key2", (7,8,9)), ("key2", (0,1,2)))

test: Seq[(String, (Int, Int, Int))] = List((key1,(1,2,3)), (key1,(4,5,6)), (key2,(7,8,9)), (key2,(0,1,2)))

test.foreach(println)

(key1,(1,2,3))

(key1,(4,5,6))

(key2,(7,8,9))

(key2,(0,1,2))

val rdd = sc.parallelize(test, 2)

rdd: org.apache.spark.rdd.RDD[(String, (Int, Int, Int))] = ParallelCollectionRDD[41] at parallelize at :26

val rdd1 = rdd.groupByKey.map(x => (x._1,x._2.toArray)).map(x => (x._1, x._2.sortBy(x => x._1).zipWithIndex))

rdd1: org.apache.spark.rdd.RDD[(String, Array[((Int, Int, Int), Int)])] = MapPartitionsRDD[44] at map at :25

val rdd2 = rdd1.flatMap{ 
  elem =>
   val key = elem._1
   elem._2.map(row => (key, row._1, row._2))
 }

rdd2: org.apache.spark.rdd.RDD[(String, (Int, Int, Int), Int)] = MapPartitionsRDD[45] at flatMap at :25

rdd2.collect.foreach(println)

(key1,(1,2,3),0)

(key1,(4,5,6),1)

(key2,(0,1,2),0)

(key2,(7,8,9),1)

From spark sql
Read the data files...
val df = spark.read.json("s3://s3bukcet/key/activity/year=2018/month=12/date=15/*");

The above file has fields user_id, pageviews and clicks

Generate the activity Id (row_number) partitioned by user_id and order by clicks
val output = df.withColumn("activity_id", functions.row_number().over(Window.partitionBy("user_id").orderBy("clicks")).cast(DataTypes.IntegerType));

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!