dask DataFrame equivalent of pandas DataFrame sort_values

怎甘沉沦 提交于 2019-12-04 08:31:41

Sorting in parallel is hard. You have two options in Dask.dataframe

set_index

As now, you can call set_index with a single column index:

In [1]: import pandas as pd

In [2]: import dask.dataframe as dd

In [3]: df = pd.DataFrame({'x': [3, 2, 1], 'y': ['a', 'b', 'c']})

In [4]: ddf = dd.from_pandas(df, npartitions=2)

In [5]: ddf.set_index('x').compute()
Out[5]: 
   y
x   
1  c
2  b
3  a

Unfortunately dask.dataframe does not (as of November 2016) support multi-column indexes

In [6]: ddf.set_index(['x', 'y']).compute()
NotImplementedError: Dask dataframe does not yet support multi-indexes.
You tried to index with this index: ['x', 'y']
Indexes must be single columns only.

nlargest

Given how you phrased your question I suspect that this doesn't apply to you, but often cases that use sorting can get by with the much cheaper solution nlargest.

In [7]: ddf.x.nlargest(2).compute()
Out[7]: 
0    3
1    2
Name: x, dtype: int64

In [8]: ddf.nlargest(2, 'x').compute()
Out[8]: 
   x  y
0  3  a
1  2  b

You would use this code to add a new composite column and set index to it:

newcol = ddf.col1 + "|" + ddf.col2
ddf = ddf.assign(ind=newcol)
ddf = ddf.set_index('ind', sorted=True)

If the dataframe was sorted by (col1, col2) then it will be sorted by newcol so you can use sorted=True.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!