Assign 0 to certain words when the words are not present

喜欢而已 提交于 2019-12-04 03:09:01

As an alternative concise way for rewriting the blocks you can store all the names in a set then crate the relative OrderedDict of your blocks then get the missed names using set.difference with main words (the set words) for each block, then write them at the end of block :

from itertools import tee
from collections import OrderedDict

d=OrderedDict()
with open('input.txt') as f,open('new','w') as new:
    f2,f3,f=tee(f,3)
    next(f3)
    words={line.split()[0] for line in f if not line.startswith('TOPIC') and line.strip()}

    for line in f2:
        if line.startswith('TOPIC'):
           key=line
           next_line=next(f3)
           try:
               while not next_line.startswith('TOPIC'):
                  d.setdefault(key,[]).append(next_line)
                  next_line=next(f3)
           except:
                pass

    for k,v in d.items():
        block_words={line.split()[0] for line in v if line.strip()}
        insec=words.difference(block_words)
        new.writelines([k]+v+['{} {}\n'.format(i,0) for i in insec])

Result :

TOPIC:topic_0 5892.0
site 0.0371690427699
Internet 0.0261371350984
online 0.0229124236253
web 0.0218940936864
say 0.0159538357094
image 0.015105227427
president 0
s 0
BBC 0
tell 0
Mr 0
TOPIC:topic_1 12366.0
Mr 0.150331554262
s 0.0517548115801
say 0.0451237263464
president 0.0153647096879
tell 0.0135856380398
BBC 0.0135856380398web 0
image 0
online 0
site 0
Internet 0
Padraic Cunningham

The issue is you are treating the TOPICS as all one, if you want individual sections use the groupby code from the original answer getting a set of all names first then comparing the set of names against the defualtdict keys to find the difference in each section:

from collections import defaultdict
d = defaultdict(float)
from itertools import groupby, imap

with open("doc1") as f,open("doc2") as f2:
    values = imap(float, f2.read().split())
    # find every word in every TOPIC
    all_words = {line.split()[0] for line in f if line.strip() and not line.startswith("TOPIC")}
    f.seek(0) # rset pointer
    # lambda x: not(x.strip()) will split into groups on the empty lines
    for ind, (k, v) in enumerate(groupby(f, key=lambda x: not(x.strip()))):
        if not k:
            topic = next(v)
            #  get matching float from values
            f = next(values)
            # iterate over the group
            for s in v:
                name, val = s.split()
                d[name] += (float(val) * f)
            # get difference in all_words vs words in current TOPIC
            # giving 0 as default for missing values
            for word in all_words - d.viewkeys():
                d[word] = 0
            for k,v in d.iteritems():
                print("Prob for {} is {}".format(k,v))
            d = defaultdict(float)

To store all the output you can add the dicts to a list:

from collections import defaultdict
d = defaultdict(float)
from itertools import groupby, imap
with open("doc1") as f,open("doc2") as f2:
    values = imap(float, f2.read().split())
    all_words = {line.split()[0] for line in f if line.strip() and not line.startswith("TOPIC")}
    f.seek(0)
    out = []
    # lambda x: not(x.strip()) will split into groups on the empty lines
    for ind, (k, v) in enumerate(groupby(f, key=lambda x: not(x.strip()))):
        if not k:
            topic = next(v)
            #  get matching float from values
            f = next(values)
            # iterate over the group
            for s in v:
                name, val = s.split()
                d[name] += (float(val) * f)
            for word in all_words - d.viewkeys():
                d[word] = 0
            out.append(d)
            d = defaultdict(float)

Then iterate over the list:

for top in out:
  for k,v in top.iteritems():
            print("Prob for {} is {}".format(k,v))

Or forget the defualtdict and use dict.fromkeys:

from itertools import groupby, imap

with open("doc1") as f,open("doc2") as f2:
    values = imap(float, f2.read().split())
    all_words = [line.split()[0] for line in f if line.strip() and not line.startswith("TOPIC")]
    f.seek(0)
    out, d = [], dict.fromkeys(all_words ,0.0)
    # lambda x: not(x.strip()) will split into groups on the empty lines
    for ind, (k, v) in enumerate(groupby(f, key=lambda x: not(x.strip()))):
        if not k:
            topic = next(v)
            #  get matching float from values
            f = next(values)
            # iterate over the group
            for s in v:
                name, val = s.split()
                d[name] += (float(val) * f)
            out.append(d)
            d = dict.fromkeys(all_words ,0)

If you always want the missing words at the end use a collections.OrderedDict with the first approach adding missing values at the end of the dict:

from collections import OrderedDict

from itertools import groupby, imap
with open("doc1") as f,open("doc2") as f2:
    values = imap(float, f2.read().split())
    all_words = {line.split()[0] for line in f if line.strip() and not line.startswith("TOPIC")}
    f.seek(0)
    out = []
    # lambda x: not(x.strip()) will split into groups on the empty lines
    for  (k, v) in groupby(f, key=lambda x: not(x.strip())):
        if not k:
            topic = next(v)
            #  get matching float from values
            f = next(values)
            # iterate over the group
            for s in v:
                name, val = s.split()
                d.setdefault(name, (float(val) * f))
            for word in all_words.difference(d):
                    d[word] = 0
            out.append(d)
            d = OrderedDict()

for top in out:
    for k,v in top.iteritems():
         print("Prob for {} is {}".format(k,v))

Finally to store in order and by topic:

from collections import OrderedDict

from itertools import groupby, imap

with open("doc1") as f,open("doc2") as f2:
    values = imap(float, f2.read().split())
    all_words = {line.split()[0] for line in f if line.strip() and not line.startswith("TOPIC")}
    f.seek(0)
    out = OrderedDict()
    # lambda x: not(x.strip()) will split into groups on the empty lines
    for (k, v) in groupby(f, key=lambda x: not(x.strip())):
        if not k:
            topic = next(v).rstrip()
            # create OrderedDict for each topic
            out[topic] = OrderedDict()
            #  get matching float from values
            f = next(values)
            # iterate over the group
            for s in v:
                name, val = s.split()
                out[topic].setdefault(name, (float(val) * f))
            # find words missing from TOPIC and  set to 0
            for word in  all_words.difference(out[topic]):
                    out[topic][word] = 0

for k,v in out.items():
    print(k) # each TOPIC
    for k,v in v.iteritems():
        print("Prob for {} is {}".format(k,v)) # the OrderedDict items
   print("\n")

doc1:

TOPIC:topic_0 5892.0
site 0.0371690427699
Internet 0.0261371350984
online 0.0229124236253
web 0.0218940936864
say 0.0159538357094
image 0.015105227427

TOPIC:topic_1 12366.0
Mr 0.150331554262
s 0.0517548115801
say 0.0451237263464
president 0.0153647096879
tell 0.0135856380398
BBC 0.0135856380398

doc2:

0.345 0.566667

Output:

TOPIC:topic_0 5892.0
Prob for site is 0.0128233197556
Prob for Internet is 0.00901731160895
Prob for online is 0.00790478615073
Prob for web is 0.00755346232181
Prob for say is 0.00550407331974
Prob for image is 0.00521130346231
Prob for BBC is 0
Prob for Mr is 0
Prob for s is 0
Prob for president is 0
Prob for tell is 0


TOPIC:topic_1 12366.0
Prob for Mr is 0.085187930859
Prob for s is 0.0293277438137
Prob for say is 0.0255701266375
Prob for president is 0.00870667394471
Prob for tell is 0.0076985327511
Prob for BBC is 0.0076985327511
Prob for web is 0
Prob for image is 0
Prob for online is 0
Prob for site is 0
Prob for Internet is 0

You can apply the exact same logic using a regular for loop, the groupby just does all the grouping work for you.

If you actually just want to write to a file then the code even simpler:

from itertools import groupby, imap
with open("doc1") as f,open("doc2") as f2,open("prob.txt","w") as f3:
    values = imap(float, f2.read().split())
    all_words = {line.split()[0] for line in f if line.strip() and not line.startswith("TOPIC")}
    f.seek(0)
    for (k, v) in groupby(f, key=lambda x: not(x.strip())):
        if not k:
            topic, words  = next(v), []
            flt = next(values)
            f3.write(topic)    
            for s in v:
                name, val = s.split()
                words.append(name)
                f3.write("{} {}\n".format(name, (float(val) * flt)))
            for word in all_words.difference(words):
                  f3.write("{} {}\n".format(word, 0))
            f3.write("\n")

prob.txt:

TOPIC:topic_0 5892.0
site 0.0128233197556
Internet 0.00901731160895
online 0.00790478615073
web 0.00755346232181
say 0.00550407331974
image 0.00521130346231
BBC 0
Mr 0
s 0
president 0
tell 0

TOPIC:topic_1 12366.0
Mr 0.085187930859
s 0.0293277438137
say 0.0255701266375
president 0.00870667394471
tell 0.0076985327511
BBC 0.0076985327511
web 0
image 0
online 0
site 0
Internet 0

I would first read file1 as a list of mappings { word, value }, each topic building an element of the list.

with open('Doc1') as f:
    maps = []
    for line in f:
        line = line.strip()
        if line.startswith('TOPIC'):
            mapping = {}
            maps.append(mapping)
        elif len(line) == 0:
            pass
        else:
            k, v = line.split()
            mapping[k] = v

Then I will build a set of all words by taking the union of keys from all mappings

words = set()
for mapping in maps:
    words = words.union(mapping.keys())

Then I will iterate on each mapping and add a 0 value for all keys in the set of words not already present in the dict.

for mapping in maps:
    for k in words.difference(mapping.keys()):
        mapping[k] = 0

That way, all words are present in all mappings, and it is trivial to build a nice d dict :

d = {k : list() for k in words }
for mapping in maps:
    for k in mappings:
        d[k].append(float(mapping[k]))

Each word present in at least one topic has for value a list of 100 values one per topic, with the true value when it is present and 0 if not : zip will now work fine.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!