Turn Pandas Multi-Index into column

僤鯓⒐⒋嵵緔 提交于 2019-11-26 18:24:17
CraigSF

The reset_index() is a pandas DataFrame method that will transfer index values into the DataFrame as columns. The default setting for the parameter is drop=False (which will keep the index values as columns).

All you have to do add .reset_index(inplace=True) after the name of the DataFrame:

df.reset_index(inplace=True)  

This doesn't really apply to your case but it could be helpful for others (like me 5 minutes ago) to know. If one's multindex have the same names like this:

                         value
Trial        Trial
    1              0        13
                   1         3
                   2         4
    2              0       NaN
                   1        12
    3              0        34 

df.reset_index(inplace=True) will fail cause the columns that is created cannot share names.

So then you need to rename the multindex with df.index = df.index.set_names(['Trial', 'measurement']) to get:

                           value
Trial    measurement       

    1              0        13
    1              1         3
    1              2         4
    2              0       NaN
    2              1        12
    3              0        34 

And then df.reset_index(inplace=True) will work like a charm.

I encountered this problem after grouping by year and month on a datetime-column(not index) called live_date, which meant that both year and month were named live_date.

As @cs95 mentioned in a comment, to drop only one level, use:

df.reset_index(level=[...])

This avoids having to redefine your desired index after reset.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!