Python/Pandas: counting the number of missing/NaN in each row

∥☆過路亽.° 提交于 2019-12-03 04:30:26

问题


I've got a dataset with a big number of rows. Some of the values are NaN, like this:

In [91]: df
Out[91]:
 1    3      1      1      1
 1    3      1      1      1
 2    3      1      1      1
 1    1    NaN    NaN    NaN
 1    3      1      1      1
 1    1      1      1      1

And I want to count the number of NaN values in each string, it would be like this:

In [91]: list = <somecode with df>
In [92]: list
    Out[91]:
     [0,
      0,
      0,
      3,
      0,
      0]

What is the best and fastest way to do it?


回答1:


You could first find if element is NaN or not by isnull() and then take row-wise sum(axis=1)

In [195]: df.isnull().sum(axis=1)
Out[195]:
0    0
1    0
2    0
3    3
4    0
5    0
dtype: int64

And, if you want the output as list, you can

In [196]: df.isnull().sum(axis=1).tolist()
Out[196]: [0, 0, 0, 3, 0, 0]

Or use count like

In [130]: df.shape[1] - df.count(axis=1)
Out[130]:
0    0
1    0
2    0
3    3
4    0
5    0
dtype: int64


来源:https://stackoverflow.com/questions/30059260/python-pandas-counting-the-number-of-missing-nan-in-each-row

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!