1.案例:
sklearn20类新闻分类;
20个新闻组数据集包含20个主题的18000个新闻组帖子;
2.朴素贝叶斯案例流程:
1、加载20类新闻数据,并进行分割
2、生成文章特征词
3、朴素贝叶斯estimator流程进行预估
3.代码实现:
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
def naviebayes():
news = fetch_20newsgroups()
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25)
# 对数据集进行特征抽取
tf = TfidfVectorizer()
# 以训练集中的词列表进行每篇文章的重要性统计,x_train得到一些词,来预测x_test
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names())
x_test = tf.transform(x_test)
# 进行朴素贝叶斯的预测
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray()) # toarray()作用,转为矩阵形式
mlt.fit(x_train,y_train)
y_predict = mlt.predict(x_test)
print("预测文章的类别为:",y_predict)
print("准确率:",mlt.score(x_test,y_test))
if __name__ == '__main__':
naviebayes()

x_test的结果为:
