18_朴素贝叶斯案例

和自甴很熟 提交于 2019-12-02 23:49:55

1.案例:

  sklearn20类新闻分类;

    20个新闻组数据集包含20个主题的18000个新闻组帖子;

2.朴素贝叶斯案例流程:

  1、加载20类新闻数据,并进行分割

  2、生成文章特征词

  3、朴素贝叶斯estimator流程进行预估

3.代码实现:

from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB


def naviebayes():
    news = fetch_20newsgroups()
    x_train,x_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25)
    # 对数据集进行特征抽取
    tf = TfidfVectorizer()
    # 以训练集中的词列表进行每篇文章的重要性统计,x_train得到一些词,来预测x_test
    x_train = tf.fit_transform(x_train)
    print(tf.get_feature_names())
    x_test = tf.transform(x_test)

    # 进行朴素贝叶斯的预测
    mlt = MultinomialNB(alpha=1.0)
    print(x_train.toarray()) # toarray()作用,转为矩阵形式
    mlt.fit(x_train,y_train)
    y_predict = mlt.predict(x_test)
    print("预测文章的类别为:",y_predict)
    print("准确率:",mlt.score(x_test,y_test))


if __name__ == '__main__':
    naviebayes()

 

 x_test的结果为:

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!