VGG网络结构

第一层: 3x3x3x64, 步长为1, padding=1
第二层: 3x3x64x64, 步长为1, padding=1
第三层: 3x3x64x128, 步长为1, padding=1
第四层: 3x3x128x128, 步长为1, padding=1
第五层: 3x3x128x256, 步长为1, padding=1
第六层: 3x3x256x256, 步长为1, padding=1
第七层: 3x3x256x256, 步长为1, padding=1
第八层: 3x3x256x512, 步长为1, padding=1
第九层: 3x3x512x512, 步长为1, padding=1
第十层:3x3x512x512, 步长为1, padding=1
第十一层: 3x3x512x512, 步长为1, padding=1
第十二层: 3x3x512x512, 步长为1, padding=1
第十三层:3x3x512x512, 步长为1, padding=1
第十四层: 512*7*7, 4096的全连接操作
第十五层: 4096, 4096的全连接操作
第十六层: 4096, num_classes 的 全连接操作
import torch
from torch import nn
class VGG(nn.Module):
def __init__(self, num_classes):
super(VGG, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2),)
self.classifier = nn.Sequential(
nn.Linear(512*7*7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x