至于题是哪来的,老师BB出来的
至于怎么BB的,请自己联想
Max Sum of Max-K-sub-sequence
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
题意自己百度
这道题,可以这样做
解释都在注释和下面
`
由于是一个圈 1 2 3 4 5 显然1的左边还有5 那么我们就把问题分为两类 第一类: 就是一个没有跨过了n的序列 第二类: 一个跨过了n的序列`
第一类
题意可转换为
有一序列
在其中找一个长度不超过k的子序列使其和最大
有多个子序列满足条件的按题意输出
就用。。。
第二类
在整个序列中找一子序列,使其总和最小且长度大于等于n - k
ans = ALL - 子序列总和
是不是很简单( ⊙ o ⊙ )啊!
#include <cstdio> #include <climits> const int MAXN = 100001; class MYOWN { public: int val,it; MYOWN() { val = 0; it = 0; } }; int main() { int T; scanf("%d",&T); //多组数据 while(T--) { int i,n,k,head,tail,ALL = 0; /* 显然head记录队头,tail记录队尾 ALL方便第二种 */ int num[MAXN] = {},sum[MAXN] = {}; int ans = -1001,l,r; MYOWN q[MAXN]; scanf("%d%d",&n,&k); for(i = 1;i <= n;i++) { scanf("%d",&num[i]); sum[i] = sum[i - 1] + num[i]; ALL += num[i]; } head = 1;tail = 1; for(i = 1;i <= n;i++) { while(q[head].it < i - k&&head <= tail) head++; int delta = sum[i] - q[head].val; if(delta > ans) { ans = delta; l = q[head].it + 1; r = i; } while(sum[i] <= q[tail].val&&tail >= head) tail--; tail++; q[tail].val = sum[i]; q[tail].it = i; } //第一类,单调队列嘛 k = n - k; q[0].val = -1001; for(i = 1;i <= n;i++) { if(sum[i] <= q[i - 1].val) { q[i].it = q[i - 1].it; q[i].val = q[i - 1].val; } else { q[i].val = sum[i]; q[i].it = i; } } //第二类,根本不需要单调队列!!用用动规思想记录下 //q[i].val 记录从一到i的sum[i]的最大值 //q[i].it记录q[i].val第一次出现的下标(题目要求的多个答案的输出要求) for(i = k + 1;i < n;i++) { int delta = ALL - sum[i] + q[q[i - k].it].val; if(delta > ans) { ans = delta; l = i + 1; r = q[i - k].it; } } printf("%d %d %d\n",ans,l,r); } return 0; }