卷积神经网络概念
卷积神经网络 卷积神经网络(CNN)是深度学习的代表算法之一 。具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络” 。 随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于 计算机视觉 、 自然语言处理 等领域 。 卷积是通过两个函数 f,g 生成第三个函数的一种数学算子,表征函数 f 与 g 经过翻转和平移的重叠部分的面积。数学定义公式: 事实上,在卷积网络上使用的离散卷积,也就是不连续的,它是一种运算方式,也就是按照卷积核,将输入对应位置的数据进行加权和运算,接下来结合卷积核的概念,就会很好理解了。 卷积神经网络最重要的两个知识点就是 卷积核 和 卷积神经网络的结构 卷积核 卷积核定义 卷积操作 深度 步幅 零填充 卷积神经网络的结构 输入层 INPUT 卷积层 CONV 激活函数层 RELU 池化层 POOL 全连接层 FC 卷积核 卷积核的定义 :对于输入图像中的一部分区域,进行加权平均的处理,其中这个过程的权重,由一个函数定义,这个函数就是卷积核。 如下图彩色图像有RGB三个色值通道,分别表示红、绿、蓝,每个通道内的像素可以用一个像下图右边的二维数组表示,数值代表0-255之间的像素值。假设一张900*600的彩色的图片,计算机里面可以用 (900*600*3)的数组表示。