特征函数

【Graph Embedding】GCN:天空飘来七个大字

匆匆过客 提交于 2020-02-27 04:00:21
今天学习的是阿姆斯特丹大学的同学于 2016 发表的一篇论文《Semi-supervised Classification with Graph Convolutional Networks》,目前有 2800 多引用。 在 2013 年在之前,NetWork Representation 有两种主流的方式,包括矩阵分解和 NetWork Embedding。 在 2013 年之后,也就是 Mikolov 提出 Word2Vec 之后,人们将注意力转移到 Network Embedding 上,并在此之后出现了很多有名的算法——DeepWalk、LINE、Node2Vec 等等。但是所有的这些方法都需要分成两步分别优化,一个是基于随机游走的生成序列和另一个是半监督学习的训练。 2013 年,本文作者提出了基于空间的图卷积神经网络,通过在图上进行卷积来完成特征提取,并取得非常好的效果。 1. Introduction 我们知道对于 CNN 网络中来说,其核心在使用了基于 Kernel 的卷积操作来提取图像的特征,卷积操作类似于对 计算区域内的中心节点和相邻节点进行加权求和 : CNN 之所以能成为图像领域的明珠却很少应用于其他领域原因是: 图片是一个规整的二维矩阵 ,无论 Kernel 平移到图片中的哪个位置都可以保证其运算结果的一致性,即: 平移不变性 。CNN

深度学习概述:从感知机到深度网络

吃可爱长大的小学妹 提交于 2020-02-24 21:08:53
  (注:本文译自一篇博客,作者行文较随意,我尽量按原意翻译,但作者所介绍的知识还是非常好的,包括例子的选择、理论的介绍都很到位,由浅入深, 源文地址 )   近些年来,人工智能领域又活跃起来,除了传统了学术圈外,Google、Microsoft、facebook等工业界优秀企业也纷纷成立相关研究团队,并取得了很多令人瞩目的成果。这要归功于社交网络用户产生的大量数据,这些数据大都是原始数据,需要被进一步分析处理;还要归功于廉价而又强大的计算资源的出现,比如GPGPU的快速发展。   除去这些因素,AI尤其是机器学习领域出现的一股新潮流很大程度上推动了这次复兴——深度学习。本文中我将介绍深度学习背后的关键概念及算法,从最简单的元素开始并以此为基础进行下一步构建。   (本文作者也是Java deep learning library的作者,可以从 此处 获得,本文中的例子就是使用这个库实现的。如果你喜欢,可以在Github上给个星~。用法介绍也可以从 此处 获得) 机器学习基础   如果你不太熟悉相关知识,通常的机器学习过程如下:     1、机器学习算法需要输入少量标记好的样本,比如10张小狗的照片,其中1张标记为1(意为狗)其它的标记为0(意为不是狗)——本文主要使用监督式、二叉分类。     2、这些算法“学习”怎么样正确将狗的图片分类,然后再输入一个新的图片时

夜空中最亮的星

人走茶凉 提交于 2020-02-15 04:46:46
目录 夜空中最亮的星 1- Dirichlet 积分 3-特征函数 4-特征函数性质 5-中心极限定理 夜空中最亮的星 1- Dirichlet 积分 设 \(I(a)=\frac1\pi\int_0^{+\infty}\frac{\sin{at}}{t}dt\) ,则有: \[ I(a)= \begin{cases} \frac12&\text{a>0}\\ 0&a=0\\ -\frac12&a<0 \end{cases} \] 为了证明 \(Dirichlet\ 积分\) ,我们先证明 \(\int_0^{+\infty}\frac{\sin{x}}{x}dx=\frac\pi2\) \[ \begin{align} 设\ \frac1x=&\int_0^{+\infty}e^{-xs}ds\\ \int_0^T\frac{\sin{x}}{x}dx=&\int_0^{T}(\sin{x}{\int_0^{+\infty}e^{-xs}ds)}dx\\ =&\int_0^{+\infty}({\int_0^{T}\sin{x}\ e^{-xs}dx)}ds\\ =&\int_0^{+\infty}[\frac{1}{1+s^2}-\frac{s\cdot\sin T+T\cdot\cos{T}}{s^2+T^2}e^{-s}]ds\\ =&\frac\pi2-\int_0^{+

矩阵特征值

試著忘記壹切 提交于 2020-02-13 02:19:32
参考:https://www.zhihu.com/question/21874816 如何理解矩阵特征值? 想要理解特征值,首先要理解矩阵相似。什么是矩阵相似呢?从定义角度就是:存在可逆矩阵P满足B= 则我们说A和B是相似的。让我们来回顾一下之前得出的重要结论:对于同一个线性空间,可以用两组不同的基 和基 来描述,他们之间的过渡关系是这样的: ,而对应坐标之间的过渡关系是这样的: 。其中P是可逆矩阵,可逆的意义是我们能变换过去也要能变换回来,这一点很重要。 我们知道,对于一个线性变换,只要你选定一组基,那么就可以用一个矩阵T1来描述这个线性变换。换一组基,就得到另一个不同的矩阵T2(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系)。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。具体来说,有一个线性变换 ,我们选择基 来描述,对应矩阵是 ;同样的道理,我们选择基 来描述 ,,对应矩阵是 ;我们知道基 和基 是有联系的,那么他们之间的变换 和 有没有联系呢? 当然有, 和 就是相似的关系,具体的请看下图: &amp;lt;img src="https://pic1.zhimg.com/6cf43eca0f26cb1752f8fbf2633b699c_b.jpg" data-rawwidth="721" data-rawheight="449" class

机器学习之支持向量机

删除回忆录丶 提交于 2020-02-08 20:31:39
SVM与神经网络 支持向量机并不是神经网络,这两个完全是两条不一样的路吧。不过详细来说,线性SVM的计算部分就像一个单层的神经网络一样,而非线性SVM就完全和神经网络不一样了(是的没错,现实生活中大多问题是非线性的),详情可以参考知乎答案。 这两个冤家一直不争上下,最近基于神经网络的深度学习因为AlphaGo等热门时事,促使神经网络的热度达到了空前最高。毕竟,深度学习那样的多层隐含层的结构,犹如一个黑盒子,一个学习能力极强的潘多拉盒子。有人或许就觉得这就是我们真正的神经网络,我们不知道它那数以百千计的神经元干了什么,也不理解为何如此的结构能诞生如此美好的数据 —— 犹如复杂性科学般,处于高层的我们并不能知道底层的”愚群“为何能涌现。两者一比起来,SVM似乎也没有深度学习等那么令人狂热,连Hinton都开玩笑说SVM不过是浅度学习(来自深度学习的调侃)。 不然,个人觉得相对于热衷于隐含层的神经网络,具有深厚的数学理论的SVM更值得让我们研究。SVM背后伟大的数学理论基础可以说是现今人类的伟大数学成就,因此SVM的解释性也非神经网络可比,可以说,它的数学理论让它充满了理性,这样的理性是一个理工科生向往的。就如,你渴望知道食物的来源以确定食物是否有毒,如果有毒是什么毒,这样的毒会在人体内发生了什么反应以致于让你不适 —— 我的理性驱使我这么想,一个来路不明的食物是不能让我轻易接受的。

机器学习之线性回归

99封情书 提交于 2020-02-07 01:01:04
1.什么是线性回归 线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务。那什么是回归任务和分类任务呢?简单的来说,在监督学习中(也就是有标签的数据中),标签值为连续值时是回归任务,标志值是离散值时是分类任务。 线性回归模型就是处理回归任务的最基础的模型。 线性回归模型试图学得一个线性模型以尽可能准确地预测实值X的输出标记Y。在这个模型中,因变量Y是连续的,自变量X可以是连续或离散的。 首先来了解一些字母的含义:m-训练集样本的数量;x-输入变量/特征;y-输出变量/要预测的目标变量;(x,y)-表示一个训练样本;( x ( i ) x^{(i)} x ( i ) , y ( i ) y^{(i)} y ( i ) )中i上标:表示第i个训练样本,即表示表格中的第i行; x 1 x_{1} x 1 ​ 、 x 2 x_{2} x 2 ​ 、… x n x_{n} x n ​ 表示特征向量,n表示特征向量的个数; h θ h_{\theta} h θ ​ (x)称为假设函数,h是一个引导从x得到y的函数; 举个简单的例子: 输入数据:工资( x 1 x_{1} x 1 ​ )和房屋面积( x 2 x_{2} x 2 ​ )(两个特征) 输出目标:预测银行会贷款多少钱(标签) 姓名 工资 房屋面积 可贷款金额 张三 6000 58 33433 李四 9000 77

统计学习方法 李航---第5章 决策树

北城以北 提交于 2020-02-06 04:58:44
第5章 决策树 决策树(decision tree)是一种基本的分类与回归方法。本章主要讨论用于分类的决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。预测时,对新的数据,利用决策树模型进行分类。决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。 5.1 决策树模型与学习 定义5.1 (决策树) : 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。结点有两种类型:内部结点(internal node )和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。 用决策树分类,从根结点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子结点;这时,每一个子结点对应着该特征的一个取值。如此递归地对实例进行测试并分配,直至达到叶结点。最后将实例分到叶结点的类中。 图中圆和方框分别表示内部结点和叶结点. 决策树与if-then规则 可以将决策树看成一个if-then规则的集合,转换成if-then规则的过程:由决策树的根结点到叶结点的每一条路径构建一条规则

统计学习方法笔记

烂漫一生 提交于 2020-02-03 03:33:55
统计学习方法概论 1.1 统计学习 统计学习 (statistics learning): 计算机 基于 数据 构建 概率统计模型 并运用 模型 对 数据 进行 预测与分析 。也称为 统计机器学习 (statistics machine learning)。 统计学习的特点: 以 计算机及网络 为平台,是建立在计算机及网络之上的; 以 数据 为研究对象,是数据驱动的学科; 目的是对 数据 进行 预测与分析 ; 统计学习以 方法 为中心,统计学习方法构建 模型 并应用模型进行预测与分析; 是 概率论、统计学、信息论、计算理论、最优化理论及计算机科学等 多个领域的交叉学科; // 现在我们所说的机器学习,往往是指 统计机器学习 。 统计学习的对象 数据(data) 。 首先呢,统计学习从数据出发,提取数据的特征,抽象出数据中的模型,发现数据中的知识,最终又回到对数据的分析预测中去。 其次,作为统计学习的对象,数据是多样的,它包括存在于计算机及网络上的各种 数字 、 文字 、 图像 、 视频 、 音频 数据以及它们的组合。 关于数据的基本假设: 同类数据具有一定的统计规律性。 (什么叫“同类数据”:具有某种共同性质的数据,比如英文文章,互联网网页,数据库中的数据等,它们具有统 计规律性 ,所以可以用 概率统计方法 来进行处理。比如,可以用随机变量描述数据中的特征

多项式回归

我是研究僧i 提交于 2020-01-31 10:59:19
在没有激励函数的情况下,输出和输入只是线性关系,甚至就算加上激励函数,那也是和整个输出的非线性关系. 当我感觉输出应该和某个特征为非线性关系时,该怎么办? 这里要用到一种叫多项式回归的办法: 其实也很简单,就是把原来的输入加一项,某个特征的幂次,质数,随便你. 假如原来的输入特征向量是: 现在我先对数据集进行一些处理,将其变为: 当然,我在吴恩达老师的课里还看到一种方法: 这两个方法的核心思想都是处理特征使模型更好. 总之不能无脑输入数据集,先有自己的一些判断和处理还是很重要的. 来源: CSDN 作者: oahuyil 链接: https://blog.csdn.net/realliyuhao/article/details/104121248

L1和L2:损失函数和正则化

a 夏天 提交于 2020-01-29 16:08:52
作为损失函数 L1范数损失函数    L1 范数损失函数 ,也被称之为最小绝对值误差。总的来说,它把目标值$Y_i$与估计值$f(x_i)$的 绝对差值 的总和最小化。 $$S=\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数    L2 范数损失函数 ,也被称为最小平方误差,总的来说,它把目标值$Y_i$与估计值$f(x_i)$的 差值的平方和 最小化。 $$S=\sum_{i=1}^n(Y_i-f(x_i))^2$$ L1损失函数 L2损失函数 鲁棒 不是很鲁棒 不稳定性 稳定解 可能多个解 总是一个解    总结一下 :L2范数loss将误差平均化( 如果误差大于1,则误差会放大很多 ),模型的误差会比L1范数来得大,因此模型会对样本更加敏感,这就需要调整模型来最小化误差。如果有个样本是一个异常值,模型就需要调整以适应单个的异常值,这会牺牲许多其他正常的样本,因为这些正常的样本的误差比这单个的异常值的误差小。 作为正则化   我们经常会看见损失函数后面添加一个额外项,一般为 L1-norm , L2-norm ,中文称作 L1正则化 和 L2正则化 ,或者 L1范数 和 L2函数 。   L1正则化和L2正则化可以看做是损失函数的 惩罚项 。所谓『惩罚』是指对损失函数中的某些参数做一些限制。 防止模型过拟合而加在损失函数后面的一项。 L1正规化