tcp四次挥手

在浏览器输入URL回车之后发生了什么(转载)

眉间皱痕 提交于 2020-04-02 19:24:44
转自:https://www.cnblogs.com/abdm-989/p/11979689.html#_label0 打开浏览器从输入网址到网页呈现在大家面前,背后到底发生了什么?经历怎么样的一个过程?先给大家来张总体流程图,具体步骤请看下文分解! 从URL输入到页面展现   总体来说分为以下几个过程:   (1)URL 解析   (2)DNS 解析:将域名解析成 IP 地址   (3)TCP 连接:TCP 三次握手   (4)发送 HTTP 请求   (5)服务器处理请求并响应 HTTP 报文   (6)浏览器解析渲染页面   (7)断开连接:TCP 四次挥手 一 URL解析 URL(Uniform Resource Locator),统一资源定位符,用于定位互联网上资源,俗称网址。比如 http://www.w3school.com.cn/html/index.asp ,遵守以下的语法规则:   scheme://host.domain:port/path/filename    各部分解释如下:     scheme - 定义因特网服务的类型。常见的协议有 http、https、ftp、file,其中最常见的类型是 http,而 https 则是进行加密的网络传输。     host - 定义域主机(http 的默认主机是 www)     domain - 定义因特网

TCP协议的三次握手和四次挥手

谁说胖子不能爱 提交于 2020-04-02 05:19:36
             TCP协议的三次握手和四次挥手 我们知道,TCP是主机对主机层的传输控制协议,提供可靠的连接服务,需要三次握手建立连接,而终止一个连接要经过四次挥手。 三次握手 第一次握手:客户端申请连接(SYN=1),发送seq=x的数据包,等待服务器确认。 第二次握手:服务器端申请连接(SYN=1),确认收到客户端的申请(ACK=1).;服务器期望下次收到x+1数据包(ack=x+1),发送seq=y的数据包。 第三次握手:客户端确认收到请求(SYN=1),发送服务器期望的数据包(y+1),完成连接。 四次挥手 第一次挥手:客户端请求断开连接(FIN=1),发送数据(seq=u)。 第二次挥手:确认收到请求(ACK=1),期望收到数据包(ack=u+1),发送数据(seq=v)。 第三次挥手:服务器申请断开连接(FIN=1),确认收到你之前的请求(ACK=1);期望收到数据(ack=u+1),发送数据(seq=w)。 第四次挥手:确认收到请求(ACK=1),发送数据(seq=u+1),断开连接。 为什么需要三次握手?    如果不采用“三次握手”,那么只要服务器发出确认,新的连接就建立了。由于现在客户端并没有发出建立连接的请求,因此不会理睬服务器的确认,也不会向服务器发送ACK包,但是服务端确认为新的连接开始了,等待客户端发数据,这样就会白白浪费资源。而经过三次握手

网络

删除回忆录丶 提交于 2020-04-01 13:09:13
OSI 的七层模型 应用层 :网络服务与最终用户的一个接口。HTTP、FTP、RPC 表示层: 数据的表示、安全、压缩。 会话层: 建立、管理、终止会话。 传输层: 定义传输数据的协议端口号,以及流控和差错校验。TCP、UDP 网络层: 进行逻辑地址寻址,实现不同网络之间的路径选择。IP 数据链路层: 建立逻辑连接、进行 硬件地址 寻址、差错校验等功能。MAC 物理层: 建立、维护、断开物理连接。bit流 TCP和UDP UDP在传输数据时不需要建立连接,远程的主机在接收到 UDP报文 之后不需要给出确认。 虽然提供的是不可靠交付,但是在某些情况下是一种有效的工作方式(一般用于即时通信),比如QQ语音,QQ音频,直播等等。UDP支持一对一,一对多,多对一和多对多的交互通信。 TCP在传输数据之前需要先建立连接,数据传输结束后需要释放连接。并且,不提供广播或者多播。由于TCP需要提供可靠的,面向连接的传输服务,所以会增加开销,如,确认、流量控制、计时器以及连接管理等。TCP一般用于文件的传输、发送和邮件的收发、远程登录等。 TCP特点: TCP通过检验 序列号,确认应答, 重发控制 ,连接管理以及窗口控制等机制实现可靠性传输。 通过序列号与确认应答提高可靠性(传输): TCP通过肯定的确认应答ACK实现可靠的 数据传输 。当发生端将数据发送出去之后会等待对端 的确认应答

5.通信协议

南楼画角 提交于 2020-03-30 18:55:14
目的: 为了解决计算机之间如何交流 协议: 约定,就好比我们现在说的是普通话。如果说英语,就有人听不懂了。 网络通信协议: 速率,传输码率,代码结构,传输控制...... 问题: 非常的复杂 太多了,我们就大事化小:分层! TCP/IP协议簇:实际上是一组协议 重要的两个: TCP: 用户传输协议,就像打电话,需要建立连接,通了才能聊天。 UDP: 用户数据包协议,好比发短信,发出去就不管了。 有两个出名的协议:所以才叫TCP/IP协议簇 TCP:用户传输协议 IP:网络互连协议 TCP和UDP对比: TCP:打电话 连接,稳定 三次握手 四次挥手: 1 最少需要3次,保证稳定连接! 2 A:你瞅啥? 3 B:瞅你咋地? 4 A:干一场! 5 6 A:我要断开了! 7 B:我知道你要断开了! 8 B:你真的要断开了吗? 9 A:我真的要走了! 客户端、服务端 传输完成,释放连接,效率低 UDP:发短信 不连接,不稳定 客户端、服务端:没有明确的界限 不管有没有准备好,都可以发给你... DDOS:洪水攻击!就是我给你的电脑上,发一堆的垃圾包,造成端口堵塞,堵住了线路,于是你的网络就炸了。 来源: https://www.cnblogs.com/duanfu/p/12600104.html

TCP连接之报文首部

大憨熊 提交于 2020-03-30 16:06:38
在面试时,会经常被问到TCP报文的一些细节,可以说TCP报文是不少企业用来考察面试者对网络的掌握程度的一道题目。 TCP连接作为网络传输的一个环节,是不可或缺的一部分。例如,OSI七层模型的应用层HTTP就是基于TCP连接实现的。 TCP连接的三次握手和四次挥手机制相信是每个后台开发人员耳熟能详的知识点,那么关于TCP的报文细节以及背后的原理是怎么样的呢?TCP是怎样借助报文来实现三次握手和四次挥手呢?笔者通过阅读书本和加上自己的理解。通过本文,来谈谈TCP报文首部以及报文首部背后的原理。 首先先粘上一张TCP报文图 好了,下面介绍一些基础的内容 TCP虽然是面向字节流的,但TCP传送的数据单元却是报文段,一个TCP报文段分首部和数据两部分,其中很关键的就是TCP的报文头,TCP的全部功能都体现在首部中的各个字段中。 TCP报文段首部的前20个字节(上图有标识)是固定的,后面有4n字节(如果有选项最少为4字节)是根据需要添加的选项,所以TCP首部的最小长度是20字节。 1. 源端口号和目的端口号: 各2个字节,分别写入源端口号和目的端口号。端口就是我们熟悉的65536个套接字的端口号,显然,源端口号和目的端口号跟TCP的分用功能有着密切的关系,不同的应用使用不同的端口号,这样就可以互不干扰。而通信的双方的端口号必须相同,才能保证这一条通道是连接畅通的。 2.序列号(32位)

TCP的长连接与短连接

被刻印的时光 ゝ 提交于 2020-03-30 04:02:14
1.TCP连接 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接,如图所示: (1)第一次握手:建立连接,客户端A发送SYN包(SYN=j)到服务器B,并进入SYN_SEND状态,等待服务器B确认. (2)第二次握手:服务器B收到SYN包,必须确认客户A的SYN(ACK=j+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器B进入SYN_RECV状态. (3)第三次握手:客户端A收到服务器B的SYN+ACK包,向服务器B发送确认包ACK(ACK=k+1),此包发送完毕,客户端A和服务器B进入ESTABLISHED状态,完成三次握手。 图1.TCP三次握手建立连接 2.TCP断开连接 由于TCP连接时全双工的,因此每个方向都必须单独进行关闭。这个原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。 (1)客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送 (2)服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1,和SYN一样,一个FIN将占用一个序号。 (3)服务器B关闭与客户端A的连接,发送一个FIN给客户端A. (4

java网络

*爱你&永不变心* 提交于 2020-03-26 09:57:26
这个图很形象的展示了OSI的五层架构之间的关系。 OSI被称为开放式互联,是国际标准组织制定的网络模型,本来是七层,后来把表现层和会话层加到应用层里面了。 那么五层模型中的每一层具体都是干什么的呢? 在标准的网络模型中,每一层都有它不同的用处,而且每一层都只提供向上和向下的接口,而不会垮层去通信。 在应用层这里,主要是为特定的应用程序提供数据传输服务。这一层是和程序员关系最紧密的一层,其中的代表性协议就是http,它的数据单位是报文。 在传输层,为进程提供数据传输服务。这一层主要为应用层的各种各样的协议提供通用的传输层协议。这里主要就是两个最简单的协议:TCP协议和UDP协议。这里传输是端到端,连接的是端口号,也就是进程。 在网络层,为主机提供数据传输服务。这一层主要将传输层的数据报封装成分组。经典协议就是IP协议。 在数据链路层,为同一链路的主机提供数据传输服务。将网络层传下来的分组封装成帧,这里主要是MAC地址。 在物理层,最底层,传输的是二进制比特流。 我们从网络层说起,一般网络层下面的就不去了解了。 网络层是整个互联网的核心。网络层向上只提供简单灵活的、无连接的。尽最大努力交互的数据报服务。 IP数据报的格式: 版本:众所周知,ip现在有两个版本,ipv4和ipv6,ipv4的地址已经用光了,ipv6地址非常多。 首部长度:上面每一行是4个字节,除去可变部分,最少有五行

20199303 2019-2020-2 《网络攻防实践》第4周作业

混江龙づ霸主 提交于 2020-03-25 21:28:42
学习总结 Sniffer(嗅探器) 嗅探器是一种常用的收集有用数据方法,这些数据可以是用户的帐号和密码,可以是一些商用机密数据等等。Snifffer可以作为能够捕获网络报文的设备,ISS为Sniffer这样定义:Sniffer是利用计算机的网络接口截获目的地为其他计算机的数据报文的一种工具。 SNIFFER要捕获的东西必须是要物理信号能收到的报文信息。显然只要通知网卡接收其收到的所有包(一般叫做杂收promiscuous模式:指网络上的所有设备都对总线上传送的数据进行侦听,并不仅仅是它们自己的数据。),在HUB下就能接收到这个网段的所有包,但是交换机下就只能是自己的包加上广播包。 要想在交换机下接收别人的包,那就要让其发往你的机器所在口。交换机记住一个口的MAC是通过接收来自这个口的数据后并记住其源MAC,就像一个机器的IP与MAC对应的ARP列表,交换机维护一个物理口与MAC的表,所以可以欺骗交换机的。可以发一个包设置源MAC是你想接收的机器的MAC,那么交换机就把你机器的网线插的物理口与那个MAC对应起来了,以后发给那个MAC的包就发往你的网线插口了,也就是你的网卡可以Sniffer到了。注意这物理口与MAC的表与机器的ARP表一样是动态刷新的,那机器发包后交换HUB就又记住他的口了,所以实际上是两个在争,这只能应用在只要收听少量包就可以的场合。

网络协议,如TCP/UDP的区别?

不打扰是莪最后的温柔 提交于 2020-03-25 13:33:20
1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接 2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付 3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的 UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等) 4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信 5、TCP首部开销20字节;UDP的首部开销小,只有8个字节 6、TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道 三次握手与四次挥手 三次握手通俗版: 第一次握手:客户端要和服务端进行通信,首先要告知服务端一声,遂发出一个SYN=1的连接请求信号,”服务端哥哥,我想给你说说话”。 第二次握手:当服务端接收到客户端的连接请求,此时要给客户端一个确认信息,”我知道了(ACK),我这边已经准备好了,你现在能连吗(SYN)”。 第三次握手:当客户端收到了服务端的确认连接信息后,要礼貌的告知一下服务端,“好的,咱们开始联通吧(ACK)”。 到此整个建立连接的过程已经结束,接下来就是双方你一句我一句甚至同时交流传递信息的过程了。 四次挥手断开连接通俗版: 第一次挥手

理解TCP/IP三次握手与四次挥手的正确姿势

岁酱吖の 提交于 2020-03-21 13:59:58
背景 和女朋友异地恋一年多,为了保持感情我提议每天晚上视频聊天一次。 从好上开始,到现在,一年多也算坚持下来了。 问题 有时候聊天的过程中,我的网络或者她的网络可能会不好,视频就会卡住,听不到对方的声音,过一会儿之后才会恢复。 中间双方可能就要不断的确认网络是否恢复,但是有时候会: 她:“你可以听到了吗?” 我:“可以了,你呢?”、 她:“喂喂,你可以听到了吗?” 我:“可以了,我可以听到了,你呢?” 她:“你可以听到了吗?” ..... 这种情况很蛋疼,那么怎样才能找一个简单的办法,让两个人都确认自己可以听到对方的声音,对方也可以听到自己的声音呢? 注:以下情节纯属虚构 方案 TCP建立连接为什么是三次握手,而不是两次或四次? TCP,名为传输控制协议,是一种可靠的传输层协议,IP协议号为6。 顺便说一句,原则上任何数据传输都无法确保绝对可靠,三次握手只是确保可靠的基本需要。 举个日常例子,打电话时我们对话如下: 对应为客户端与服务器之间的通信: 于是有了如下对话: 我:1+1等于几? 她:2,2+2等于几? 我:4 首先两个人约定协议 1.感觉网络情况不对的时候,任何一方都可以发起询问 2.任何情况下,若发起询问后5秒还没收到回复,则认为网络不通 3.网络不通的情况下等1min路由器之后再发起询问 对于我而言,发起 “1+1等于几”的询问后 1. 若5s内没有收到回复